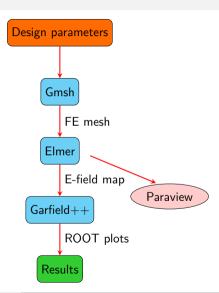
ND-GAr 3D Electrostatic Field Simulation Update

Nicholas Johnston & Chris Hayes

IU Bloomington

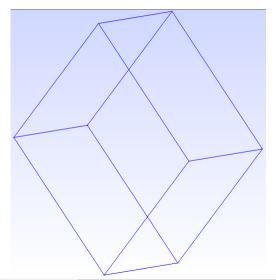
August 3, 2020

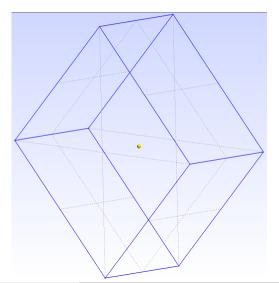


Project goals

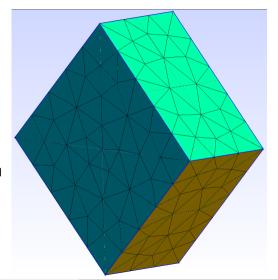
- Develop a full 3D electrostatic simulation of the ND-GAr TPC
 - Using Elmer FEM (Finite Element Method) to solve for the electric field in the TPC
 - Using Garfield++ for simulation of gas ionization and electron drift in a gaseous TPC
 - Using Gmsh to generate the geometry and finite element mesh for Elmer and Garfield++
- Use this 3D simulation to:
 - Test and compare TPC geometries, primarily focusing on the field cage
 - Constrain design parameters such as field strip width and pitch
 - Provide numerical studies on any aspect of the detector design involving the electric field
- Future extensions could include thermal and gas flow simulations with Elmer

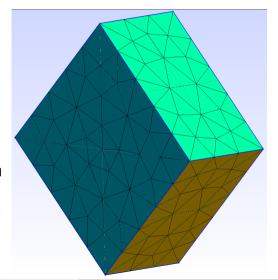
Simulation Workflow Overview

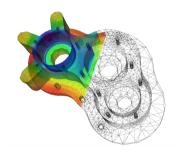

- Design parameters: Includes TPC width, radius, length, field strip width and pitch, etc
- Gmsh: Constructs geometry and generates Finite Element (FE) mesh for Elmer
- Elmer: Applies voltages to parts of the mesh and solves for the electric field
- Garfield++: Uses the electric field map from Elmer to simulate the detector response
- Paraview: 3D data visualization, primarily for debugging
- Results: Garfield++ provides results primarily in the form of ROOT plots


- Gmsh is a 3D finite element (FE) mesh generator
- Includes a relatively low level (but scriptable) geometry engine

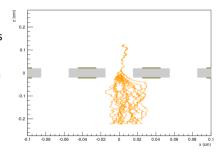
- Gmsh is a 3D finite element (FE) mesh generator
- Includes a relatively low level (but scriptable) geometry engine
 - Start by defining points

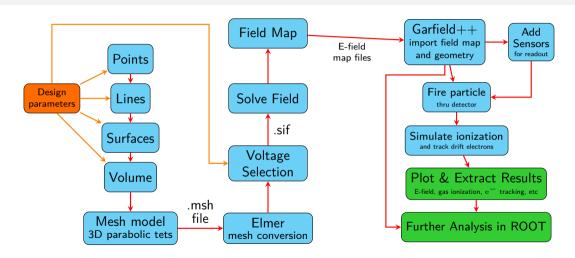

- Gmsh is a 3D finite element (FE) mesh generator
- Includes a relatively low level (but scriptable) geometry engine
 - Start by defining points
 - Connect the points into lines defining the edges of surfaces


- Gmsh is a 3D finite element (FE) mesh generator
- Includes a relatively low level (but scriptable) geometry engine
 - Start by defining points
 - Connect the points into lines defining the edges of surfaces
 - Define surfaces and connect into volumes


- Gmsh is a 3D finite element (FE) mesh generator
- Includes a relatively low level (but scriptable) geometry engine
 - Start by defining points
 - Connect the points into lines defining the edges of surfaces
 - Define surfaces and connect into volumes
- A FE mesh is a method of discretizing a model into uniform elements, consisting of nodes at the corners and lines connecting them

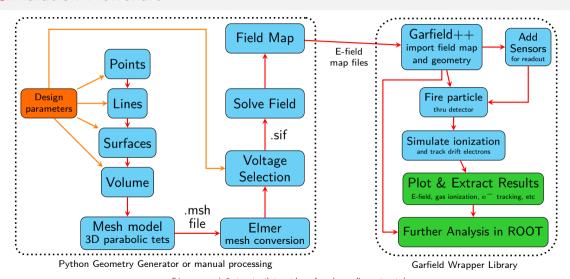
- Gmsh is a 3D finite element (FE) mesh generator
- Includes a relatively low level (but scriptable) geometry engine
 - Start by defining points
 - Connect the points into lines defining the edges of surfaces
 - Define surfaces and connect into volumes
- A FE mesh is a method of discretizing a model into uniform elements, consisting of nodes at the corners and lines connecting them
- Designs can be created manually with a GUI, scripted in Gmsh's language, or programmed using Gmsh's API


Elmer FEM Overview

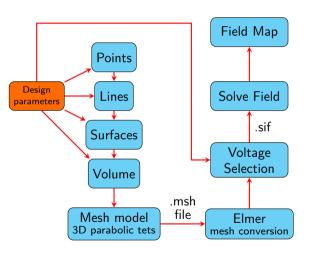

- Elmer is an open source physics simulation package, which includes models for fluid dynamics, heat transfer, electromagnetics, and more as PDFs
- Elmer imports a FE mesh in multiple formats (Ansys, universal format, gmsh, etc)
- Materials, equations, and boundary conditions are configured either via a GUI or human readable script (.sif)
- The finite element method (FEM) iteratively approximates solutions to infinite PDEs describing physical interactions by only allowing the mesh elements to interact on nodes
- Elmer iteratively solves the PDEs using the finite element method, producing a results file containing the final physical state of the simulation

Garfield++ Overview

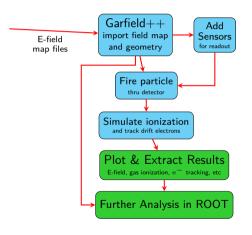
- Garfield++ is a package for simulation of particle detectors and successor to Garfield
- Features a limited native geometry capability, primarily imports field maps from FEM software
- Garfield++ simulates ionization in detector material from high energy particles
- Tracks electrons and ions, simulating their drift under and electric field
- Can also simulate the charge collection on sensor elements, allowing a full detector response study



Simulation Flowchart


Crimson arrows indicate a step that must be performed manually or automated

Simulation Flowchart


Crimson arrows indicate a step that must be performed manually or automated

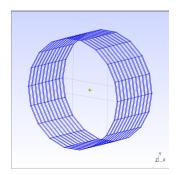
Geometry Generator and Elmer Control Module

- Manually executing this sequence is time consuming and infeasible for a systematic study, necessitating a program to automate the process
- Written in Python 3 using the GMSH Python API
- Parametrically defines a simple TPC can model (field strips, anode, and cathode)
- Generates the 3D parabolic tetrahedron mesh, and saves to a .msh file
 - The mesh node spacing can be controlled for higher resolution results
- Converts the mesh to the ElmerSolver format (needed by Elmer and Garfield++)
- Configures the FEM simulation (materials, voltages, etc)
- Runs ElmerSolver to create the electric field map

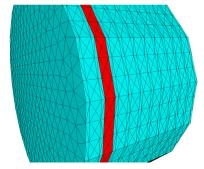
Garfield++ Wrapper Library

- Garfield++ is designed to study one simulation, but we need to compare many at once
- Condensing management of Garfield++ steps into a library facilitates this and simplifies writing new analysis
- Written in C++, using ROOT and Garfield++
- Each analysis includes the wrapper library and is compiled as a standalone program
- Currently features a few analysis programs, including a mesh refinement study and electric field plotting
- Capabilities currently under development:
 - Gas ionization simulation
 - Electron drift
 - Signal readout (initially just charge collection on cathode plane)

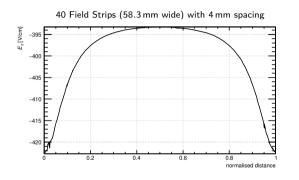
Technical Details


- Entire simulation is currently run on the IU Carbonate cluster computer (RHEL 7)
 - I also wrote a script to automate running many simulaions simultaneously using the job system on Carbonate
- All supporting software was compiled from source
- Elmer requires a large suite of supporting software, Garfield++ only needs ROOT 6 and Geant4
- ullet The mesh size is variable, generating Elmer-format meshes between \sim 10 MB and \sim 4 GB
- Maximum resolution is a mesh element size of approximately 30 mm, requiring approximately 6 hours to mesh and solve
- The simulation requires about 40GB of RAM per instance (at the highest mesh resolution)
- Currently single threaded, but Elmer supports parallel field solving

Current capabilities


- We can perform full 3D simulations of the electric field in the ND-GAr detector with completely open source software
- It is presently parameterized by the number of field strips, sides, and strip spacing, but can easily be changed to perform other studies
- Our simulation currently includes voltage, dielectric materials, and gas properties, with the ability to add more in the future

Current Detector Design


- Currently using a relatively simple "can" model as a proof of concept
- The design copies the ALICE TPC, but only simulates one side of the TPC (mirror symmetry)
- Radially divides the sides of a can into strips, alternately representing the field strips and the gap between them
- Elmer sets the field strip sections to the specified voltage, and the "gap strips" are ignored

Example Results: Strip number comparison

- Plot the z-component of the E-field as a function of z, at points $9/10^{\text{ths}}$ of the TPC radius from the axis (y = 2.18 m)
- The TPC model with more field strips shows less overall variation in the E_z field strength

Summary

- Future capabilities:
 - Full particle ionization in Garfield++ is close to being fully implemented in our sim, allowing simulation of ionization electron drift and ground anode charge collection
 - More complex geometries either from more advanced gmsh scripts or professional 3D CAD packages can be imported with relative ease into the current FEM/Garfield++ system
- We have a number of studies in progress and expect to report results soon, including:
 - Electric field stability dependency on field strip pitch and width
 - Alternate drift chamber configurations (see Chris Hayes' talk)