Use of Material Volumes for a TPC Electrostatic Simulation

Christopher Hayes & Nicholas Johnston

August 3rd, 2020

Indiana University

Use of Material Volumes in Gmsh and Elmer

• Materials

- Conductors: Copper, Silver, Aluminum,
- Dielectrics: PVC, Silicon, Glass, Fused Quartz
- Vacuum
- Material Properties:
 - Density, Dielectric Constant, Conductivity, Viscosity Specific Heat, Thermal Expansion Coefficient
- Elmer GUI has programmable menus
 - Insert materials of choice with your own material properties

Gmsh geometry showing three independent volumes

2

- Design composed of 5 independent volumes
 - 4 outer quadrants
 - Central 18-sided volume
- TPC has length of 2.5 m and diameter of 6.0 m.
- Cylindrical Surface has 24 strips (physical surfaces) to which appropriate voltages can be applied

Meshing Capabilities of Gmsh

- Powerful mesh generator creates meshes with: Triangles Prisms Quadrangles Hexahedra Tetrahedra Pyramids
- Ability to control the mesh density at points inside the volume
- Can create coarse mesh files from a few KiloBytes to dense (fine) mesh files of many MegaBytes.

5-Volume TPC uploaded to Elmer GUI

- 2. Select materials for each physical volume:
 - Outer quadrants 1-4: PVC
 - 18-sided inner volume: Air

3. Apply boundary conditions:

- 100 kV at back face
- 0 kV at front face
- Each of 24 strips (s1, s2,, s24) (4000 V, 8000 V,, 96,0000 V)
- 4. Generate SIF file

5. Run the Solver (output field map is a .vtu file)

Elmer Results for the TPC Design using ParaView Visualization Software

Electric Field/Potential on Central Axis of TPC Using ParaView

Details of Electric Field Components on Central Axis

Variation of Ez along center: 0.05 percent

Significance of Ex and Ey is minimal:

Ex/Ez < 10E-5 Ey/Ez < 10E-5

Fields near the Edge of the TPC Using ParaView

• Fields at y=2.95 m from center

9

ជារ

Electric field from Top to Bottom Using ParaView

Right Plot (z=0.2 m)

- 1.0e+05

- 0.0e+00

L.X.x

A New Design for a TPC

- Design based on discussions in Tuesday July 14th, 2020 gas TPC meeting
 - TPC with a full 5 meter drift volume with readout electronics installed on only one end of the device
 - Extra ROCs can then be used as replacements if needed
 - Increase the cathode voltage considerably at the far end (Maybe 180kV)
 - Cost savings for needing FEE on one side of the device
 - ALICE design necessary based on CM interaction region at the center of the device. DUNE device measuring interactions from orthogonal Neutrino beam

TPC with full 5m Drift Volume

- Design uses 28 OROC's from the ALICE Detector (8 leftover)
- Total area for 28 OROCs is 17.9 m²
- Compare with total area of IROCs, OROCs, and the CROC on the cylindrical ALICE design where A=17.2 m²
- Can consider a similar design with Central cathode and readout chambers on both sides. For this design, need to build 20 more OROCs.

Thank you for your time

