Use of Material Volumes for a TPC
 Electrostatic Simulation

Christopher Hayes \& Nicholas Johnston
August 3 ${ }^{\text {rd }}, 2020$
Indiana University

Use of Material Volumes in Gmsh and Elmer

- Materials
- Conductors: Copper, Silver, Aluminum,
- Dielectrics: PVC, Silicon, Glass, Fused Quartz
- Vacuum
- Material Properties:
- Density, Dielectric Constant, Conductivity, Viscosity Specific Heat, Thermal Expansion Coefficient
- Elmer GUI has programmable menus
- Insert materials of choice with your own material properties

Gmsh geometry showing three independent volumes

Gmsh Design for a TPC

- Design composed of 5 independent volumes
- 4 outer quadrants
- Central 18-sided volume
- TPC has length of 2.5 m and diameter of 6.0 m .
- Cylindrical Surface has 24 strips (physical surfaces) to which appropriate voltages can be applied

Meshing Capabilities of Gmsh

- Powerful mesh generator creates meshes with:

Triangles
Quadrangles Hexahedra
Tetrahedra

Prisms

Pyramids

- Ability to control the mesh density at points inside the volume
- Can create coarse mesh files from a few KiloBytes to dense (fine) mesh files of many MegaBytes.

5-Volume TPC uploaded to Elmer GUI

1. Set up Elmer to solve the electrostatic equation
2. Select materials for each physical volume:

- Outer quadrants 1-4: PVC
- 18-sided inner volume: Air

3. Apply boundary conditions:

- 100 kV at back face
- 0 kV at front face
- Each of 24 strips (s1, s2,, s24) (4000 V, 8000 V,, 96,0000 V)

4. Generate SIF file
5. Run the Solver (output field map is a .vtu file)

Elmer Results for the TPC Design using ParaView Visualization Software

ParaView:

- Open source software
- Visualization of 2D and 3D data sets
- Capabilities
\checkmark Multi-View
\checkmark Plotting
\checkmark Animation
\checkmark Streamlines
\checkmark Etc.

Electric Field/Potential on Central Axis of TPC Using ParaView

Details of Electric Field Components on Central Axis

Fields near the Edge of the TPC Using ParaView

- Fields at $y=2.95 \mathrm{~m}$ from center

Electric field from Top to Bottom Using ParaView

Right Plot (z=0.2 m)

A New Design for a TPC

- Design based on discussions in Tuesday July 14 ${ }^{\text {th }}, 2020$ gas TPC meeting
- TPC with a full 5 meter drift volume with readout electronics installed on only one end of the device
- Extra ROCs can then be used as replacements if needed
- Increase the cathode voltage considerably at the far end (Maybe 180kV)
- Cost savings for needing FEE on one side of the device
- ALICE design necessary based on CM interaction region at the center of the device. DUNE device measuring interactions from orthogonal Neutrino beam

TPC with full 5m Drift Volume

- Design uses 28 OROC's from the ALICE Detector (8 leftover)
- Total area for 28 OROCs is 17.9 m2
- Compare with total area of IROCs, OROCs, and the CROC on the cylindrical ALICE design where A=17.2 m${ }^{2}$
- Can consider a similar design with Central cathode and readout chambers on both sides. For this design, need to build 20 more OROCs.

Thank you for your time

