Leptonic Scalar at Colliders

Tathagata Ghosh

Collaborators: A. de Gouvea, B. Dev, B. Dutta, T. Han, H. Qin, Y. Zhang

JHEP 07 (2020) 142 [arXiv:1910.01132]

Snowmass EF-09 Meeting

August 7, 2020

Leptonic Scalar @ Colliders

How to measure scalar-induced NSIs at colliders?

(How to produce a (light) scalar at colliders if it couples only to neutrinos?)

Scalar ϕ with Lepton-number of -2

• Suppose we have a leptonic scalar ϕ :

- A singlet under SM gauge groups
- Carries -2 (+2) units of L(B L) charge
- Mass below EW scale (246 GeV)

• Effective coupling of ϕ to the active neutrinos ($\alpha, \beta = e, \mu, \tau$):

$$\mathcal{L}_{\phi} \supset rac{1}{2} \, \lambda_{lphaeta} \,
u_{L_{lpha}}^{T} \, \mathcal{C} \,
u_{L_{eta}} \, \phi$$

No lepton number violation in the interaction
 If q² ≪ m²_φ ⇒ effective (νν)(νν) self-interactions

Low-energy limits on $\lambda_{\alpha\beta}$

Berryman, de Gouvêa, Kelly & Zhang, [1802.00009]; Lessa & Peres, [0701068]; Pasquini & Peres, [1511.01811]

As ϕ couples exclusively to neutrinos, we have the limits for $m_\phi\gtrsim 100$ MeV:

- Charged meson decay rates, e.g. $\pi^- \rightarrow \ell^- \nu \phi$
- Charged lepton decay rates, e.g. $\tau^- \to \ell^- \nu \nu \phi$
- Heavy neutrino searches in meson decay spectra, e.g. $\pi^- \to \ell^- N$ vs. $\pi^- \to \ell^- \nu \phi$
- W and Z decay rates: $Z \rightarrow \nu \nu \phi$, $W^- \rightarrow \ell^- \nu \phi$
- Neutrino beam experiments, e.g. MINOS & DUNE $\nu_{\alpha} + p \rightarrow \ell_{\beta}^{+} + n + \phi$
- IceCube and CMB limits on NSIs

The LHC prospects are almost constants for $m_{\phi} \lesssim \mathcal{O}(10)$ GeV.

イロト イポト イヨト イヨト 二日

Current & future data on $\lambda_{\alpha\beta}$ limits

Process	Data	Couplings Mass range	
$\pi^- ightarrow {\rm e}^- \bar{\nu}_e \nu \bar{\nu}$	${ m BR} < 5 imes 10^{-6}$	$\sum_{\beta} \lambda_{e\beta} ^2$	$m_{\phi} < 131$ MeV
$K^- ightarrow e^- \bar{ u}_e u \bar{ u}$	${ m BR} < 6 imes 10^{-5}$	$\sum_{\beta} \lambda_{e\beta} ^2$	$m_\phi < 444$ MeV
$K^- ightarrow \mu^- \bar{ u}_\mu \nu \bar{ u}$	$\mathrm{BR} < 2.4 \times 10^{-6}$	$\sum_{\beta}^{\prime} \lambda_{\mu\beta} ^2$	$m_{\phi} < 386$ MeV
$D^- ightarrow e^- \bar{ u}_e$	$\mathrm{BR} < 8.8 imes 10^{-6}$	$\sum_{\beta} \lambda_{e\beta} ^2$	$m_\phi < 1.52 \; { m GeV}$
$D^- o \mu^- \bar{ u}_\mu$	${\rm BR} < 3.4 \times 10^{-5}$	$\sum_{\beta} \lambda_{\mu\beta} ^2$	$m_{\phi} < 1.39$ GeV
$D_s^- ightarrow e^- ar{ u}_e$	$\mathrm{BR} < 8.3 imes 10^{-5}$	$\sum_{\beta} \lambda_{e\beta} ^2$	$m_{\phi} < 1.64$ GeV
$D_s^- o \mu^- \bar{\nu}_\mu$	${ m BR} = (5.50 \pm 0.23) imes 10^{-3}$	$\sum_{\beta}^{\prime} \lambda_{\mu\beta} ^2$	$m_{\phi} < 1.50$ GeV
$B^- ightarrow e^- ar{ u}_e$	$\mathrm{BR} < 9.8 imes 10^{-7}$	$\sum_{\beta} \lambda_{e\beta} ^2$	$m_\phi < 3.54$ GeV
$B^- o \mu^- \bar{ u}_\mu$	${ m BR}=(2.90-10.7) imes10^{-7}$	$\sum_{\beta} \lambda_{\mu\beta} ^2$	$m_{\phi} < 3.50 { m GeV}$
$\tau^- ightarrow e^- \bar{\nu}_e \nu_{ au}$	$BR = (17.82 \pm 0.04)\%$	$\sum_{\beta} \lambda_{e\beta} ^2$	$m_{\phi} <$ 741 MeV
$\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$	${ m BR} = (17.39 \pm 0.04)\%$	$\sum_{\beta}^{\prime} \lambda_{\mu\beta} ^2$	$m_{\phi} <$ 741 MeV
$P^- \rightarrow e^- N$	see 1712.00297	$\sum_{\beta} \lambda_{e\beta} ^2$	$3.3{ m MeV} < m_\phi <$ 448 MeV
$P^- \rightarrow \mu^- N$	see 1712.00297	$\sum_{\beta}^{\prime} \lambda_{\mu\beta} ^2$	$87{ m MeV} < m_\phi < 379{ m MeV}$
$Z \to \text{inv.}$	$\Gamma^{ m inv}_{ m obs} = (499.0 \pm 1.5) \; { m MeV} \ \Gamma^{ m inv}_{ m SM} = (501.44 \pm 0.04) \; { m MeV}$	$\sum_{lpha,eta} \mathit{S}_{lphaeta} \lambda_{lphaeta} ^2$	$m_{\phi} <$ 52.2 GeV
W ightarrow e u	${ m BR}=(10.71\pm0.16)\%$	$\sum_{\beta} \lambda_{e\beta} ^2$	$m_{\phi} <$ 38.8 GeV
$W ightarrow \mu u$	${ m BR}=(10.63\pm0.15)\%$	$\sum_{\beta}^{\prime} \lambda_{\mu\beta} ^2$	$m_{\phi} <$ 39.3 GeV
$h \rightarrow \text{inv.}$	${ m BR} < 24\% (4.2\%)$	$\sum_{\alpha,\beta} S_{\alpha\beta} \lambda_{\alpha\beta} ^2$	$m_{\phi} < 64.8(72.6){ m GeV}$
MINOS	see 1802.00009	$ \lambda_{\mu\mu} $	$m_{\phi} < 1.67$ GeV
DUNE	see 1802.00009	$ \lambda_{\mu\mu} $	$m_{\phi} <$ 3.00 GeV
IceCube	see 1404.2279	$ \lambda_{lphaeta} $	$m_{\phi} < 2.0(15.0)$ GeV

-

3

・ロト ・回ト ・ヨト

Production of ϕ at hadron colliders

Consider only the signals with e and μ leptons

 $uu \rightarrow dd \ \ell_{\alpha}^{+} \ell_{\beta}^{+} \ \phi$

Figure: Representative Feynman diagram for the production of ϕ at the LHC.

- Signal is clean: same-sign dilepton plus VBF jets plus MET;
- NO lepton-number violation;
- Similar processes mediated by Z fusion: $uu \rightarrow uu\nu\nu\phi$

Tathagata Ghosh

Leptonic Scalar @ Colliders

Production cross section

 $\lambda_{\alpha\beta}=1 (\alpha,\beta=e,\mu)$

- Collider prospects can be significantly improved at a future 100 TeV collider
- Dominant backgrounds: $pp \rightarrow W^{\pm}W^{\pm}jj \rightarrow jj\ell_{\alpha}^{\pm}\ell_{\beta}^{\pm}\nu\nu$, $pp \rightarrow W^{\pm}Zjj \rightarrow jj\ell_{\alpha}^{\pm}\ell_{\beta}^{\pm}\ell_{\beta}^{\mp}\nu$

VBF kinematic distributions

Advantages of VBF search:

- VBF tagging jets handle on trigger
- VBF jets are in forward-backward region
- Direct probing of EW sector

Characteristic kinematic cuts:

- Significant p_T(j₁), p_T(j₂) cuts
- Large $|\Delta \eta_{j_1 j_2}|$ separation
- $\eta_{j_1} * \eta_{j_2} < 0$
- Very large M_{j1j2}

Other kinematic distributions

Most efficient cuts: $p_T(\ell_{1,2})$, $|\Delta \phi(\ell_1, E_T^{\text{miss}})|$ ℓ s for the backgrounds are coming from W, Z decay For the signal most of the energy of the *WW* system is carried by ℓ s

Other kinematic distributions

Most efficient cuts: $p_T(\ell_{1,2})$, $|\Delta \phi(\ell_1, E_T^{\text{miss}})|$ Origin of E_T^{miss} for the signal and backgrounds are different For the signal (background) E_T^{miss} is coming from $\phi(W)$ decay

Prospects of $\lambda_{\alpha\beta}$ @ LHC & HL-LHC

Tathagata Ghosh

August 7, 2020 11 / 38

- One can generate $\nu\nu\phi$ in B-L extensions of the SM
- A single \u03c6 can couple to q_{B-L} = +2 gauge-invariant odd-dimensional SM operators:

$$\mathcal{L}_{\phi} \supset \frac{1}{2} \,\tilde{\lambda}_{ij} \, \nu_{R_i}^{\mathsf{T}} \, \mathcal{C} \, \nu_{R_j} \, \phi \ + \ \frac{(L_{\alpha}^{\mathsf{T}} \, i \sigma_2 \, \mathcal{H}) \, \mathcal{C} \, (\mathcal{H}^{\mathsf{T}} \, i \sigma_2 \, L_{\beta})}{\Lambda_{\alpha\beta}^2} \, \phi \ + \ h.c$$

After EWSB effective coupling of φ to the active neutrinos
 (α, β = e, μ, τ) are generated:

$$\mathcal{L}_{\phi} \supset rac{1}{2} \, \lambda_{lphaeta} \,
u_{L_{lpha}}^T \, \mathcal{C} \,
u_{L_{eta}} \, \phi$$

• However, for $\lambda\sim {\cal O}(1),\;\Lambda\sim v\implies\Lambda$ can not be integrated out at the LHC

Possible UV completion

 Introduce a scalar Δ, a triplet under SU(2)_L with hypercharge +1 and B - L charge +2

$$\begin{split} V(H,\Delta,\phi) &= -m_H^2 + \frac{\lambda}{4} (H^{\dagger}H)^2 + M_{\Delta}^2 T r \Delta^{\dagger} \Delta + M_{\phi}^2 \phi^{\dagger} \phi \\ &+ \lambda_1 (H^{\dagger}H) T r \Delta^{\dagger} \Delta + \lambda_2 (T r \Delta^{\dagger} \Delta)^2 + \lambda_3 T r (\Delta^{\dagger} \Delta)^2 + \lambda_4 H^{\dagger} \Delta \Delta^{\dagger} H \\ &+ \lambda_5 (\phi^{\dagger} \phi)^2 + \lambda_6 (\phi^{\dagger} \phi) (H^{\dagger} H) + \lambda_7 (\phi^{\dagger} \phi) T r \Delta^{\dagger} \Delta + \lambda_8 (i \phi H^T \sigma_2 \Delta^{\dagger} H + h.c.). \end{split}$$

- ϕ can mix with Δ^0 with $\mathcal{O}(1)$ mixing to generate $\lambda_{lphaeta}\sim 1$
- One can search for Δs directly at the LHC
- We are studying the prospect of discovering ϕ in $\Delta^{++}\to \phi W^+W^+$ and $\Delta^+\to \phi W^+$ decays

Dev, Dutta, TG, Han, Qin, Zhang, [In preparation]

(日) (周) (三) (三)

Conclusion

- If a scalar couples only to neutrinos, it can be produced at LHC (and future high-energy hadron colliders) from *W* fusion.
- The signal is very clean, i.e. same-sign dilepton plus VBF jets plus missing energy, i.e.

 $pp \rightarrow \ell_{\alpha}^{\pm} \ell_{\beta}^{\pm} jj + \text{MET}$

- When the scalar mass m_φ ≤ GeV, we have stringent limits from meson decays, charged lepton decays, meson decay spectra, W & Z(h) boson decays, neutrino beam experiments (MINOS), astrophysical/cosmological limits on NSIs (IceCube) and other limits.
- The HL-LHC prospects can go down to 0.51 (0.3) using our VBF analysis $(h \rightarrow inv)$, depending on the charged lepton flavors, and surpass all current existing limits if $m_{\phi} \gtrsim 20(1)$ GeV.
- A 100 TeV collider can improve the bounds by a factor of ~ 5 assuming the same luminosity

Tathagata Ghosh

Leptonic Scalar @ Colliders

The End

Tathagata Ghosh

Leptonic Scalar @ Colliders

August 7, 2020 15 / 38

3

<ロ> (日) (日) (日) (日) (日)

Backup

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Hubble constant anomaly

Blinov, Kelly, Krnjaic, McDermott [arXiv:1905.02727]

Leptonic Scalar @ Colliders

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Summary of what we know now

- Convincing evidence of neutrino oscillations obtained in:
 - SK, SNO, KamLAND
 - Other solar and atmospheric neutrino experiments
 - Accelerator K2K experiment
- Neutrino oscillations are direct consequence of small neutrino masses and mixings

$$\begin{array}{l} \text{MIXINGS Defined as:} \\ \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U_{\alpha i} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \\ \end{array} \begin{array}{l} c_{ij} = \cos \theta_{ij} \quad s_{ij} = \sin \theta_{ij} \\ P = \text{diag}\{1, 1, e^{i\alpha}\} \end{array}$$

$$U = \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta} \\ -c_{23} s_{12} - s_{23} s_{13} c_{12} e^{i\delta} & c_{23} c_{12} - s_{23} s_{13} s_{12} e^{i\delta} & s_{23} c_{13} \\ s_{23} s_{12} - c_{23} s_{13} c_{12} e^{i\delta} & -s_{23} c_{12} - c_{23} s_{13} s_{12} e^{i\delta} & c_{23} c_{13} \end{pmatrix} P$$

Ì

Masses

- We only know two mass difference squares:
 - Atmospheric: Δm_{31}^2
 - Solar: Δm_{21}^2
 - Mass pattern still unknown
- Possibilities:
 - Normal: $m_1 \ll m_2 \ll m_3$
 - Inverted: $m_1 \simeq m_2 \gg m_3$

-

What do we notknow about the three-flavor paradigm 📿

				1		_	
		Normal Ore	lering (best fit)	Inverted Orde	ering $(\Delta \chi^2 = 9.3)$	_	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range		
	$\sin^2 \theta_{12}$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$	$0.310\substack{+0.013\\-0.012}$	$0.275 \rightarrow 0.350$		
	$\theta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82^{+0.78}_{-0.75}$	$31.62 \rightarrow 36.27$		Is θ ₂₂
	$\frac{\sin^2 \theta_{23}}{\theta_{23}/^{\circ}}$	$\begin{array}{c} 0.582\substack{+0.015\\-0.019}\\ 49.7\substack{+0.9\\-1.1}\end{array}$	$0.428 \rightarrow 0.624$ $40.9 \rightarrow 52.2$	$\begin{array}{c} 0.582\substack{+0.015\\-0.018}\\ 49.7\substack{+0.9\\-1.0} \end{array}$	$0.433 \rightarrow 0.623$ $41.2 \rightarrow 52.1$		non-negligibly greater or smaller
	$\sin^2 \theta_{13}$	$0.02240^{+0.00065}_{-0.00066}$	$0.02044 \rightarrow 0.02437$	$0.02263^{+0.00065}_{-0.00066}$	$0.02067 \rightarrow 0.02461$	V	than 45 deg?
-atm	$\theta_{13}/^{\circ}$	$8.61^{+0.12}_{-0.13}$	$8.22 \rightarrow 8.98$	$8.65^{+0.12}_{-0.13}$	$8.27 \rightarrow 9.03$		
ith SK	$\delta_{\rm CP}/^{\circ}$	217^{+40}_{-28}	$135 \to 366$	280^{+25}_{-28}	$196 \rightarrow 351$		poor knowledge
W	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$	$7.39^{+0.21}_{-0.20}$	$6.79 \rightarrow 8.01$		
_	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.525^{+0.033}_{-0.031}$	$+2.431 \rightarrow +2.622$	$-2.512^{+0.034}_{-0.031}$	$-2.606 \rightarrow -2.413$		sign of ∆m² unknown
	$\Delta m_{3\ell}^2 \equiv$	$\Delta m_{31}^2 > 0$ for	or NO and $\Delta m_{3\ell}^2$	$\equiv \Delta m_{32}^2 < 0$	for IO.		(ordering of masses)

Esteban, I., Gonzalez-Garcia, M.C., Hernandez-Cabezudo, A. et al. J. High Energ. Phys. (2019) 2019: 106. https://doi.org/10.1007/JHEP01(2019)106

Slide credit: Kate Scholberg

Leptonic Scalar @ Colliders

E 5 4

Open questions in the neutrino sector

- Only left-handed neutrinos in the SM (Parity Violation)
 - Any right-handed neutrinos (RHNs)?
 - How heavy are the RHNs?
 - RHN mixings and CP violation?
- Neutrinos are electrically neutral
 - Are they Majorana particles?
 - Lepton number violation (in neutrinoless double beta decays)?
- Neutrino masses are much smaller than the electroweak scale: $0.1 {\rm eV}/100 \, {\rm GeV} \sim 10^{-12}$
 - How to generate such smaller masses? See-saw mechanism?
 - Ultraviolet completion of see-saw models?
- Non-standard interactions (NSIs) of neutrinos?
 - Can colliders play any role to measure the NSIs?

Limits from charged meson decay rates

Lessa & Peres, [0701068]; Pasquini & Peres, [1511.01811]

meson decays involving ϕ :

 $P^- \to \ell^-_\alpha \nu \phi \,, \quad P^- = \pi^-, \, K^-, \, D^-, \, D^-_{\rm S}, \, B^- \,, \quad \ell = {\rm e}, \, \mu$

Tathagata Ghosh

August 7, 2020 22 / 38

3

(日) (周) (三) (三)

Limits from τ^- decay rates

Lessa & Peres, [0701068]; Pasquini & Peres, [1511.01811]

 τ^- decays involving $\phi:$

$$au^- o \ell^-
u
u \phi \,, \quad \ell = e, \, \mu$$

 ϕ can be emitted from the ν_{ℓ} or ν_{τ} line, therefore all the six flavor combinations of $\lambda_{\alpha\beta}$ ($\alpha, \beta = e, \mu, \tau$) are constrained.

Heavy neutrino searches in meson decay spectra

Lessa & Peres, [0701068]; Pasquini & Peres, [1511.01811]

• Heavy neutrinos N from two-body meson decays (peak searches in charged lepton energy spectra), e.g.

$$\pi^-
ightarrow e^- N \,, \quad K^-
ightarrow \ell^- N \,\, (\ell = e, \, \mu)$$

• This can be used to set limits on lepton spectra of three-body decays $P^- \to \ell \nu \phi$

Limits from h, Z and W decay rates

Berryman, de Gouvêa, Kelly & Zhang, [1802.00009]

W and Z decays involving $\phi: Z \to \nu \nu \phi, W \to \ell \nu \phi$ $h \to \nu \nu \phi$ arises if $\nu \nu \phi$ coupling develops from $LHLH\phi/\Lambda$

Berryman, de Gouvêa, Kelly & Zhang, [1802.00009]

Neutrino-matter scattering involving ϕ :

$$\nu_{\alpha} + \mathbf{p} \to \ell_{\beta}^{+} + \mathbf{n} + \phi$$

- affect the charged lepton momentum distributions;
- charged leptons have the "wrong" sign, due to emission of lepton-number-charged φ.

IceCube & CMB limits on NSIs

- PeV neutrino events could in principle set (flavor-universal) limits on neutrino-neutrino interactions in the early universe, which is effectively $|\lambda_{\alpha\beta}|^2/m_{\phi}^2$ here loka & K. Murase [1404.2279]; Ng & Beacom [1404.2288]
- Effect on neutrino free streaming will will alter the CMB temperature power spectrum. Current precision cosmological data have excluded the effective coupling $G_{\rm eff} \simeq |\lambda_{\alpha\beta}|^2/m_{\phi}^2 \gtrsim 2.5 \times 10^7 G_F$ Cyr-Racine, K. Sigurdson [1306.1536]; Basboll, Bjaelde, Hannestad, Raffelt [0806.1735]; Archidiacono, Hannestad [1311.3873]; Lancaster, Cyr-Racine, Knox, Pan [1704.06657]; Oldengott, Tram, Rampf, Wong [1706.02123]; Kreisch, Cyr-Racine, Dor [1902.00534]

Other constraints

More limits from LEP and LHC data involving W boson which are weaker:

- $pp \rightarrow W \rightarrow \ell \nu$ data @ LHC: emission of ϕ ($m_{\phi} < M_W$) will affect the distributions of p_T of charged lepton, missing energy and the transverse mass of W boson ... bounds are weaker than LEP $Z \rightarrow inv$ limits ATLAS[1701.07240]
- $pp \rightarrow W^* \rightarrow \ell \nu$ @ HL-LHC: For $m_{\phi} > M_W$, $1\ell + E_T^{miss}$ final state search will have $S/B \sim 10^{-3}$, no bounds with realistic systematics
- $e^+e^- \rightarrow W^+W^- \rightarrow q\bar{q}\ell\nu$ @ LEP: the uncertainties of distributions are too large OPAL [0708.131]
- $pp \rightarrow t\bar{t}$ @ LHC: cross section small compared to $pp \rightarrow W$ and backgrounds are complicated

イロト イポト イヨト イヨト 二日

Limits for lighter $\phi~(m_\phi \lesssim 100 \; { m MeV})$

- muon decay (for $m_\phi \lesssim 100$ MeV): $\mu \to e \nu \nu \phi$;
- Tritium decay (for $m_\phi \lesssim 10$ keV): ${}^3 ext{H} o \; {}^3 ext{He}^+ + e^- +
 u + \phi$

- $0\nu\beta\beta$ decays (for $m_{\phi} \leq \text{MeV}$): $(Z, A) \rightarrow (Z + 2, A)e^{-}e^{-}\phi$, constrained by searches of Majoron emission in $0\nu\beta\beta$ experiments NEMO-3, KamLAND-Zen, EXO-200, GERDA
- supernova (for $m_\phi \lesssim$ 30 MeV)

Choi, Kim, Kim, Lam [Phys. Rev. D37, 3225 (1988)]; Farzan [0211375]]; Heurtier, Zhang [1609.05882]

- $\Delta N_{\rm eff}$ (for $m_{\phi} \lesssim 100$ keV) from CMB [Planck Collaboration [1807.06209] & BBN (for $m_{\phi} \lesssim 200$ keV) [Ahlgren, Ohlsson, Zhou [1309.0991];
- neutrino decay (for $m_{\phi} \lesssim 0.05 \text{ eV}$): $\nu_j \rightarrow \nu_i + \phi$ including solar, atmospheric & long baseline neutrino experiments

Arcadi et. al. [1811.03530]

Vector Boson Fusion Topology

VBF tagged jets (2 energetic jets: large m_{ji} , forward region, opposite hemispheres) Fig. credit: Kechen Wang

Advantages of VBF search:

- VBF tagging jets handle on trigger
- VBF jets are in forward-backward region
- Direct probing of EW sector agnostic about color sector

Characteristic kinematic cuts:

• Significant $p_T(j_1), p_T(j_2)$ cuts

(人間) とうきょうきょう

- Large $|\Delta \eta_{j_1 j_2}|$ separation
- $\eta_{j_1} * \eta_{j_2} < 0$
- Very large M_{j1j2}
- No central jet-activity

Dominant backgrounds

ATLAS collaboration [1906.03203]; CMS collaboration [1709.05822]

- EW process pp → W[±]W[±]jj → jjℓ[±]_αℓ[±]_βνν, the final states are the same as signal, with the LHC cross section after all cuts are comparable with λ_{αβ} = 1;
- QCD process $pp \rightarrow W^{\pm}W^{\pm}jj \rightarrow jj\ell_{\alpha}^{\pm}\ell_{\beta}^{\pm}\nu\nu$, mediated by a *t*-channel gluon, can be effectively suppressed by the VBF cuts;
- pp → W[±]Zjj → jjℓ[±]_αℓ[±]_βℓ[∓]_βν, one of the charged leptons from Z decay missed by detector, and the LHC cross section after all cuts comparable with λ_{αβ} = 1.

Cut-flow table

The last two rows are the most efficient cuts.

Cut selection	Signal	$W^{\pm}W^{\pm}jj$ (EW)	$W^{\pm}W^{\pm}jj$ (QCD)	W±Zjj
Cut selection	[fb]	[fb]	[fb]	[fb]
Production	0.782	39.0	34.5	594
exactly 2 <i>l</i> :				
$ ho_{{\cal T}_{\ell_{1,2}}}>10$ GeV, $ \eta_{\ell_{1,2}} <2.5$,	0.530	9.26	5.65	177
$m_{\ell_1\ell_2} > 20$ GeV, $\Delta R_{\ell_1\ell_2} > 0.3$				
same-sign dilepton	0.529	9.26	5.65	44.5
for di-electron events: $ \eta_{e_1,e_2} > 1.37$,	0.476	7 90	4 71	36 5
$ m_{e_1e_2}-m_Z <$ 15 GeV vetoed	0.470	1.50	4.71	50.5
\geq 2 jets:	0 307	7 46	4 51	33.7
$ ho_{T_{j_{1,2}}}>20$ GeV, $ \eta(j_{1,2}) <4.5$	0.551	7.40	4.51	55.7
VBF cuts:				
$p_{T_{j_1}} > 65$ GeV, $p_{T_{j_2}} > 35$ GeV,	0.165	4.08	0.502	3.42
$m_{j_1 j_2} > 500$ GeV, $ \Delta y_{j_1 j_2} > 2$				
<i>b</i> -jet veto	0.158	3.77	0.441	3.03
$E_T^{ m miss} > 30 \; { m GeV}$	0.143	3.41	0.399	2.58
$p_{{\cal T}_{\ell_1}} > 150 { m GeV}, p_{{\cal T}_{\ell_2}} > 90 { m GeV}$	0.108	0.217	0.017	0.176
$ \Delta \phi_{\ell_1, \textit{E}_T^{\text{miss}}} > 1.8$	0.084	0.088	0.004	0.059

3 → 4 3

- There are also some sub-leading backgrounds -
 - Charged leptons from heavy-flavor hadron decays
 - Jets misidentified as leptons
 - Backgrounds coming from lepton charge misidentification
 - \blacktriangleright the $V\gamma$ production with photon misidentified as electron
- They can contribute at 20% level after VBF cuts
- ZZ, VVV, ttV(V = W, Z) contribute < 2% after VBF cuts
- If we switch on couplings involving τ leptons as well we can get $\sim 15\%$ enhancement on the signal yield.
- Electrons are required to be outside the calorimeter transition region (1.37 $<|\eta_e|<$ 1.52)
- To avoid additional background contributions from electron charge mis-reconstruction in di-electron events, we restrict electrons within $|\eta_e| < 1.37$ for such events, and discard events with $|m_{e_1e_2} m_Z| < 15$ GeV

Event yields and sensitivities

We have set $m_{\phi} = 1$ GeV and $\lambda_{\alpha\beta} = 1$ in the first table (14 TeV, 3000 fb⁻¹)

Channels		$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	Total
Signal		40	129	84	253
$W^{\pm}W^{\pm}jj$ (EW)		37	137	89	263
$W^{\pm}W^{\pm}jj$ (QCD)		2	9	2	13
W [±] Zjj		29	94	54	177
Total background		68	240	145	453
Significance	syst. error 0%	3.87	6.73	5.53	9.53
	syst. error 10%	3.24	4.21	4.00	4.83
	syst. error 20%	2.35	2.50	2.56	2.68

LHC (HL-LHC): 14 TeV, $\mathcal{L} = 300 (3000) \, {\rm fb}^{-1}$

Collider		$ \lambda_{ee} $	$ \lambda_{e\mu} $	$ \lambda_{\mu\mu} $
ППС	syst. error 0%	1.35	0.95	1.07
	syst. error 10%	1.38	1.00	1.13
	syst. error 20%	1.42	1.09	1.19
	syst. error 0%	0.68	0.51	0.57
IIL-LIIC	syst. error 10%	0.76	0.68	0.70
	syst. error 20%	0.91	0.88	0.87

Possible origin of $\nu\nu\phi$ interaction

- One can generate $\nu\nu\phi$ in $U(1)_{B-L}$ extensions of the SM
- Adding three ν_R s to the SM \implies one can gauge B L symmetry and $U(1)_{B-L}$ can be a fundamental symmetry of nature
- Neutrinos are Dirac fermions

 $\mathcal{L}_{Yuk} \supset y_{\nu} \, \overline{L} \, \widetilde{H} \, \nu_R + \mathrm{h.c}$

- Interesting phenomenological consequences of Z' J. Heeck [1408.6845]
- Gauge-invariance and Lorentz-invariance ensures that for any operator, consisting of SM(+ ν_R) fields only, and of mass-dimension d, and B L charge q_{B-L} , are constrained by:

 $(-1)^d = (-1)^{q_{B-L}/2}$

A. Kobach [1604.05726]

イロト イポト イヨト イヨト 二日

$U(1)_{B-L}$ symmetry of nature?

- Baryon number (B) and lepton number (L) are exact accidental global symmetries of the SM Lagrangian
- Both turn out to be anomalous and hence violated at the quantum level
- Adding three ν^{C} to the SM \implies one can gauge B L symmetry and $U(1)_{B-L}$ can be a fundamental symmetry of nature
- ν^{C} carry L = -1 and B L charge +1
- Conserved $U(1)_{B-L} \implies$ neutrinos are Dirac fermions $\mathcal{L}_{Yuk} \supset y_{\nu}LH\nu^{C} + h.c$
- Interesting phenomenological consequences

J. Heeck [1408.6845]

T		C 1	
Latha	ogata.	(ahr	rsh
	Bara		

Leptonic Scalar @ Colliders

August 7, 2020 36 / 38

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

$U(1)_{B-L}$ invariant operators

- We assume $U(1)_{B-L}$ is conserved even if higher-dimensional operators are allowed
- We are interested in the consequences of allowing for the existence of new degrees of freedom charged under $U(1)_{B-L}$
- Gauge-invariance and Lorentz-invariance ensures that for any operator of mass-dimension d and B L charge q_{B-L}

$$(-1)^d = (-1)^{q_{B-L}/2}$$

A. Kobach [1604.05726]

- Odd dimensional operators will have B L charge 4n + 2
- Even dimensional operators will have B L charge 4n
- L charged scalars \implies (B-L) charged scalars \implies Leptonic Scalars
- All *L* charged species with odd *B* − *L* charge can only couple to the SM fields in pairs ⇒ DM candidate

Berryman, de Gouvea, Kelly, Zhang [1802.00009], Kelly, Zhang [1901.01259]

VBF kinematic distributions

