SNOWMASS 2021 Topical Group CF1
Liquid Xenon for a Generation-3 Detector

August 7, 2020
Kevin T. Lesko, LZ
Berkeley Lab
ktlesko@lbl.gov

Rafael F. Lang, XENON
Purdue University rafael@purdue.edu

Neutrino Floor is far, far away

Leading SI limits all from LXe TPCs, for the past decade

1 Neutrino Event

Neutrino Floor is far, far away

Generation-3 Liquid Xenon Experiment
${ }^{\text {atm }}$ Neutrino Floor is far, far away

Leading SI limits all from LXe TPCs, for the past decade

Current program leaves well-motivated WIMP Gap

Xenon: Sensitivity to Many Dark Matter Candidates

NR: also spin-dependent / EFT; leading limits above 100 MeV

XENON1T "Excess":
~ 100 citations in 1 month

Abundance 8.9\%: No (expensive) enrichment

plus additional $\beta \beta$ channels
potentially probe entire inverted hierarchy

Solar ${ }^{8}$ B CEvNS ~2025: Guaranteed Science Here: simulation of 1000 days LZ

$<100 \mathrm{MeV}$ Atmospheric Neutrino CEvNS

measure low energies:

$$
\nu_{x}+N \rightarrow \nu_{x}+N
$$

Supernova Neutrino CEvNS

flavor-independent: complementary measurement

Elastic pp Solar Neutrino Scattering

Also measure $\sin ^{2} \theta_{W}$ to a few percent Cerdeno+ 1604.01025

Diverse Program with Xenon

The Next Steps for the US Dark Matter Program Exploit demonstrated \& scalable Xe detector designs

- Scale-up existing TPCs by $\sim \times 10$
- Manageable run times: 5-10 years
- Controlled and mitigated backgrounds
- Capitalize on investments and leadership
- Exploit existing experiments \& upgrades
- Expand R\&D efforts

Engage the Strong International Community

- Large community of (> 500) interested scientists with LXe expertise: LZ, XENON, XMASS, PandaX, ...
- Initial R\&D funding in place in Europe
- Excellent opportunities and platforms in the US for essential G3 R\&D

Low Risk \& Economic Path to Dark Matter Discovery

- ZEPLIN, XENON10, LUX, XENON100, XENON1T/nT and LZ have delivered promised sensitivity within cost envelopes for past decade

- Multiple, demonstrated purification technologies - no isotopic enrichment required to reduce radioactive backgrounds
- Backgrounds understood, measured \& controlled
- Xenon is an investment, not an expense

Xe: Essential Part of the Global Program in Dark Matter We recognize the value of pursuing multiple technologies and targets with physics topics of this importance: Dark Matter, $0 v \beta \beta$, 86 Neutrinos

Look forward to quantifying the complementarity of different technologies at Snowmass as detector mass, backgrounds, and operational parameters are better understood.

The Xe G3 program builds directly on the Snowmass 2014 Report \&\% P5 Recommendations

Snowmass and 2014 P5 Report

"The results of G2 direct detection experiments and other contemporaneous dark matter searches will guide the technology and design of third-generation experiments. As the scale of these experiments grows to increase sensitivity, the experimental challenge of direct detection will still require complementary experimental techniques, and international cooperation will be warranted. The U.S. should host at least one of the third-generation experiments in this complementary global suite."

Recommendation 20: Support one or more third-generation (G3) direct detection experiments, guided by the results of the preceding searches. Seek a globally complementary program and increased international partnership in G3 experiments."

Conclusions for the Xe G3 Program

Excellent Scientific Reach \& Discovery Potential

- Variety of Well-motivated Dark Matter Candidates
- Neutrinoless Double-beta Decay
- Astrophysical Neutrinos

Proven Record Delivering Sensitivity Goals \& Performance

- 3 multi-tonne detectors being commissioned

Strong Scientific Expertise and Leadership in the US

- Exploit Operating Expts and Upgrades to Inform G3 Well-aligned with Existing US and International Plans
- Complementary Technologies and Targets

Extras

Challenge for Snowmass 2021

Multi-Target Approach to Identify Signals

1802.06039, Phys. Rev D.

