Fermilab)

Single Photon Position Sensitive Detector

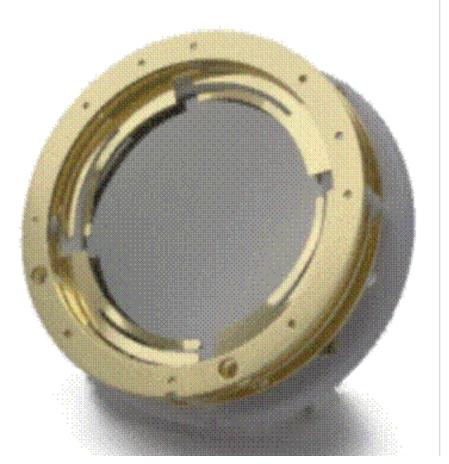
Valeri Lebedev Fermilab

July 2020

Quantar Technology Inc.

- http://www.quantar.com/pages/QTI/ofs.htm
- 3300 Series
 - ♦ Open-face, MCP-based
 - Resistive Anode Encoder (RAE) position sensitive detector
 - standard or coated (e.g. CsI, KBr) MCP surface
 - operating in vacuum (fully UHVcompatible), P<1e-6 Torr required
 - MCPs operate in a gain-saturated mode to ensure a relatively constant gain to optimize the spatial resolution
 - Charge packet disperses linearly to the four corners of resistive anode
 - Four pulse signals are processed by separate charge-sensitive preamplifiers, shaper amplifiers and discriminators.
 - X and Y coordinates of each detected event, corresponding to a single incoming particle or photon, are then computed from the ratio of charge pulse amplitudes.

Quantar Technology Inc. -3300 Series (continue)


- Standard and high spatial-resolution versions are available.
 - ♦ Standard resolution 100 resolution elements (1/100 of active dimension) across each axis.
 - High-resolution versions achieve 400 resolution elements (1/400 of active dimension)
- Spatial position linearity is typically within 5% of true position (of sensor active dimension).
 - Background count rate are typically less than 10 events per second integrated over the entire image area.
 - ◆ Coincidences of true and background events can be additionally discriminated by referencing signals to the revolution marker
 - Bias voltages for the microchannel plates by external 2-3 kV (3-4 kV for high resolution versions) power supply and resistive divider
- Options we do not need
 - ♦ Electrically Isolated Front Rings (option 001/SE)
 - Can be used for support
 - Coated MCP Options
 - ◆ CsI, KBr or similar coatings can be applied to input MCP surface to enhance detection efficiency for soft x-ray and vacuum uv applications.

Quantar Technology Inc. -3300 Series (continue)

Model	Active Area Diameter	# of MCPs	Spatial Resolution (resolvable elements)	Spatial Resoluton (approximate mm)	Overall sensor diameter
3390	25mm	2	100	0.25 mm	2.0 inch (50.8 mm)
3391-010	25mm	3	400	0.063 mm	2.0 inch (50.8 mm)
3394	40mm	2	100	0.40 mm	2.9 inch (73.7 mm)
3395-010	40mm	3	400	0.10mm	2.9 inch (73.7 mm)
3392	75mm	2	100	0.75 mm	5.5 inch (139.7 mm)
3398	80x100mm	2 or 3	100	0.79 mm	5.8 inch (147.4 mm)

- 3391-010 looks as a preferable choice for image of the beam
 - \bullet With 2 times optical amplification the sensitive area referenced to the beam is ± 6 mm, resolution is 32 μm
 - Should be the first choice
 - Further optical amplification is not expected to improve resolution which is still limited by diffraction
- 3395-010 looks as preferable choice for direct photon registration
 - $1/\gamma$ angle yields 20 mm radius at 6 m distance for 150 MeV beam

Quantar Technology Inc.— Technical Implementation

- Typical electron gain of
 - 2 MCPs stack is 5×10^6
 - 5 MCP stack is 5×10^7
- Resistive noise (Johnson noise) produced by the resistive nature of resistive anode and preamplifier noise are fixed for a given design
- MCP gain determines the S/N ratio and thus the spatial resolution

Detailed specifications

Model Number	Active Diameter	Number of MCP's	Spatial Resolution*	Spatial Resolution
3390A	25 mm	2	1/100	250 μm
3391A/010	25 mm	3	1/400	62.5 μm
3391A	25 mm	5	1/400	62.5 μm
3392A	75 mm	2	1/100	750 μm
3394A	40 mm	2	1/100	$400~\mu m$
3395A/010	40 mm	3	1/400	100 μm
3395A	40 mm	5	1/400	100 μm

Typical Background Count Rate:

at 10⁻⁶ torr pressure (sea level):

*

Maximum Bakeout Temperature:

Decoupling capacitor voltage rating: Net Weight:

Shipping Weight:

Mechanical Dimensions:

5-10 counts per sec (25mm and 40mm)

100-125 counts per sec (75 mm)

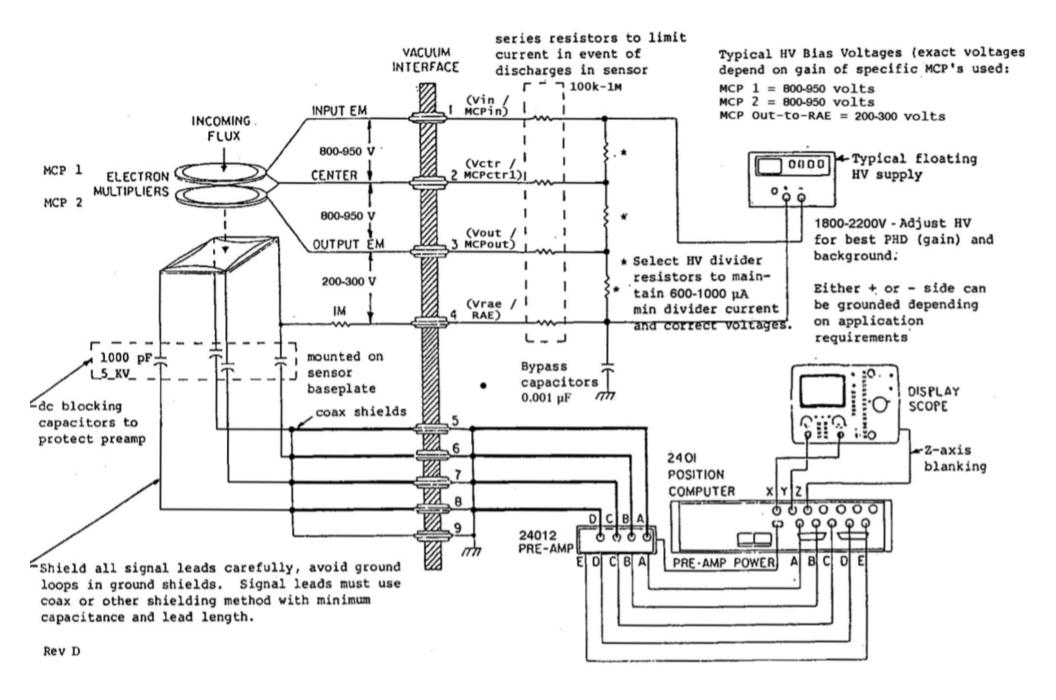
(background counts at higher altitudes may be slightly

higher due to higher rate of cosmic rays)

200 degrees C without Teflon lead set

150 degrees C with Teflon lead set

5000 V DC maximum.


Models 3390A, 3391A (25 mm): 3.5 oz (100 grams)

Models 3394A, 3395A (40 mm): 6.2 oz (180 grams)

Approximately 5 lbs (2.27 kg)

25 mm: see drawing in this Manual

40 mm: see drawing in this Manu

RorntDec Handels GmbH (D-65779 Kelkheim, Germany)

- https://www.roentdek.com/products/detectors/
- https://www.roentdek.com/info/Novel_particle.pdf