Summary of Mini-Workshop on Ring
 Magnets + Updates

R. B. Palmer, (BNL)

Brookhaven National Lab

$$
6 / 3 / 11
$$

- Cry efficiency
- Open mid-plane designs
- Tungsten liner option
- Conclusions

Cryogenic Efficiency

LBL-30824
SC-MAG-341

ESTIMATING THE COST OF SUPERCONDUCTING MAGNETS AND THE REFRIGERATORS NEEDED TO KEEP THEM COLD*
M. A. Green and R. Byrns

Lawrence Berkeley Laboratory niversity of California Berkeley, CA 94720

1991 Cryogenics Engineering Conference

Huntsville, Alabama

June 11-14, 1991
To be published in Advances in Cryogenic Engineering, Vol. 37, February 1992

Figure 3. The Efficiency of Helium Refrigerators as a Function of 4.5 K Refrigeration

- LAC efficiency at 150 k at 4.5 beg $=30 \%$ of Cannot (Shiltsev) is consistent
- LAC Distribution efficiency $=68 \% \quad$ (Shiltsev)
- So assume efficiency $30 \times 0.68=20 \%$ of Cannot
- for 4 beg: Efficiency $\approx 0.2 \times 4 / 300 \approx 1 / 375$
- To keep Wall Power for 4 beg cryogenics below 10 MW : losses must be less than $10,000 / 375=27 \mathrm{k}$

Power to decay electrons and required attenuation

- Beam Power $=2 N_{\mu} V e f=410^{12} \times 75010^{9} \times 1.610^{-19} \times 15=7.2 \mathrm{MW}$
- Beam power dissipated as electrons $=2.5 \mathrm{MW}$ (as used by Mokhov)
- For loss at 4 degrees $=27 \mathrm{k}$
- Required shield attenuation $=27 / 2,500=0.0108 \approx 1.0 \%$
- Note that we are assuming the same attenuation for all regions despite the dipoles only representing only 67% of the ring

Option \#1: Open Mid-Plane Dipole Mokhov's Open Mid plane MARS15 simulation

- Radiation on coils within quench limits
- Energy deposited in AlBeMet bridge supports not apparently a problem
- But 45% of energy dumped in 4 degree coils and coil supports
- Distributions suggest upward and downward energy flows
- WHY ?

Is it backscatter from the Tungsten bars or scatter from AlBeMet? Ding

- Simulation of fully open mid-plane
- 3 cm full gap
- But with real fields from coils
- Circa 12.3 \% of energy still dumped in coils
- So it is NOT backscatter from tungsten

New Ding studies

1. c.f. With real fields and full gap 3 cm :
2. With real fields and full gap 10 cm :
3. With uniform field and full gap 3 cm :

12.3 \% deposition in magnets negligible deposition 0.48 \% deposition

This demonstrates

- With sufficient gap deposition can be avoided
- Vertical defocusing by field reversal is significant

Variant without W bars

Transport tracks to absorbers at magnet ends

Mclntyre

Open Midplane Active Return Dipole

- Added coils needed to generate wide reverse field

How to remove all decay electrons and
synchrotron light from muon collider arc dipoles
How to remove all decay electrons and
synchrotron light from muon collider arc dipoles

OMAR

Peter McIntyre and Akhdiyor Sattarov
Texas A\&M University

Vertical trajectories

McIntyre

Check vertical trajectories with $p_{\text {ty }}=30 \mathrm{MeV} / \mathrm{c}$

- To reduce heating below 1% consider tracks down to 50 GeV
- for $p_{\perp}=30 \mathrm{MeV} / \mathrm{c}$ vertical dip at $6 \mathrm{~m}=8 \mathrm{~mm}$
- But maximum p_{\perp} including emittance is $65 \mathrm{MeV} / \mathrm{c}$ so
- Max drift $\approx 17 \mathrm{~mm}$
- So full gaps should be at least 4 cm

Engineering of open-mid-planes (BNL)

GU PTA

Principle of forces

Design for Field Quality

- Designs for LAC Upgrade (CARP)
- e.g. 13.6 T on axis 15 T on conductor deflections $<150 \mu \mathrm{~m}$ $\mathrm{b} / \mathrm{B}<310^{-5}$ to $\mathrm{r}=36 \mathrm{~mm}$
- Design for SBIR POP
- $\mathrm{B}($ axis $)=10 \mathrm{~T} \quad \mathrm{~T}<400 \mathrm{~Pa} \quad$ Deflections $<90 \mu \mathrm{~m}$

Engineering of open-mid-planes (FNAL)

Zlobin

- Two double pancake block-type coils, wound around Ti poles with 22 mm thick interlayer stainless steel plates, are placed inside an AI cage.
- The cage provides the required vertical coil separation and contains holes for cooling pipes on one side and a slot for the beam pipe and an escape pass for the decay particles to the absorber placed in one of the two holes in the iron yoke.
- Forces between coils taken by AIBeMet
though fewer than shown here
- Mokhov shows that heat deposition in AIBeMet is negligible.
- But scattering may not be

Engineering of open-mid-planes (Texas)

McIntyre

Inner set of windings are levitated, top/bottom

 windings supported by skyhook

- Geometry similar to GU PTA
- But uses "sky-hooks" to outer structure

Option \# 2: Thick tungsten beam pipe
As discussed in 98 Feasibility Study

98 MARS for $4 \mathrm{Te}^{\top}$
Mokhov $982+2 \mathrm{TeV}$ distributions vs. angle for different thicknesses of tungsten shield

Shape of distributions approx independent of shield thickness

Attenuation and shape

- At $2+2 \mathrm{TeV}$
- gamma radiation from higher E electrons (90 beg) is more than electron radiation $(\approx 4: 3)$
- and more focused
- up-down/side is $\approx 1 / 10$
- at $0.75+0.75 \mathrm{TeV}$

- gamma ad. will be relatively much less (e.g. 1:3)
- assume up-down/side still $1 / 10$
- Attenuation length
- extrapolate to zero
- initial slope steeper from narrower showers?

Required shield thicknesses

0.045	
0.23	0.68
0.0 .045	

Relative Power

0.1%	
0.4%	0.4%
0.1%	

Desired

2.2%	
1.7%	0.6%
2.2%	

Attenuation

2.55		
2.82		
		3.95
	2.55	

Thickness cm

- Initial "Relative powers" (left, right, up, down) adding to 1.0
- "Desired" powers (left, right, up, down)) adding to 1%
- Required "Attenuation"s = Desired/Initial
- Required shield "Thickness" as looked up from above plot
- This or like it would meet requirement

Section

- Inside pipe width $=5 \mathrm{~cm}$
- Inside pipe height $=2 \mathrm{~cm}$

Not quite as large as 98 study $(14 \times 14 \mathrm{~cm})$ but large

Conclusion

- Cry efficiency from LAC, including distribution, $=20 \% \times$ Cannot $\approx 0.3 \%$
- With 10 MW wall we can cool 27 k at 4 beg
- If 2.5 MW deposited from beam then shield attenuation $\leq 1 \%$
- Open mid-plane options:
- Open mid-plane designs with 3 cm gap deposit too much energy
- This is NOT backscatter from absorber bars
- Tracking suggests required full gap at least 4 cm
- Too early to know if it will meet requirements
- Tungsten beam-pipe option
- For beam pipe $5 \times 2 \mathrm{~cm}$ and 1 cm gap, then:
- Elliptical coil inside $\approx 13.8 \times 9.1 \mathrm{~cm}$
- Can certainly meat shielding requirements, but requires large coils

