Summary of Mini-Workshop on Ring Magnets + Updates

R. B. Palmer, (BNL) Brookhaven National Lab

6/3/11

Mini Workshop at FNAL 5/19-20/11 Organizer: John Tompkins

- Open mid-plane designs
- Tungsten liner option
- Conclusions

Figure 3. The Efficiency of Helium Refrigerators as a Function of 4.5 K Refrigeration

- LAC efficiency at 150 k at 4.5 beg =30% of Cannot (Shiltsev) is consistent
- LAC Distribution efficiency = 68% (Shiltsev)
- So assume efficiency $30 \times 0.68 = 20$ % of Cannot
- for 4 beg: Efficiency $\approx 0.2 \times 4/300 \approx 1/375$
- To keep Wall Power for 4 beg cryogenics below 10 MW: losses must be less than 10,000/375 = 27 k

Power to decay electrons and required attenuation

- Beam Power = $2N_{\mu}Vef = 4\ 10^{12} \times 750\ 10^9 \times 1.6\ 10^{-19} \times 15 = 7.2$ MW
- Beam power dissipated as electrons = 2.5 MW (as used by Mokhov)
- For loss at 4 degrees = 27 k
- Required shield attenuation $= 27/2,500 = 0.0108 \approx 1.0\%$
- Note that we are assuming the same attenuation for all regions despite the dipoles only representing only 67% of the ring

Option #1: Open Mid-Plane Dipole Mokhov's Open Mid plane MARS15 simulation

- Radiation on coils within quench limits
- Energy deposited in AlBe-Met bridge supports not apparently a problem
- But 45% of energy dumped in 4 degree coils and coil supports
- Distributions suggest upward and downward energy flows
- WHY ?

Is it backscatter from the Tungsten bars or scatter from AlBeMet ? Ding

- Simulation of fully open mid-plane
- 3 cm full gap
- But with real fields from coils
- Circa 12.3 % of energy still dumped in coils
- So it is NOT backscatter from tungsten

New Ding studies

- 1. c.f. With real fields and full gap 3 cm:
- 2. With real fields and full gap 10 cm:
- 3. With uniform field and full gap 3 cm:

This demonstrates

- With sufficient gap deposition can be avoided
- Vertical defocusing by field reversal is significant

12.3 % deposition in magnetsnegligible deposition0.48 % deposition

Variant without W bars

Transport tracks to absorbers at magnet ends

McIntyre

Open Midplane Active Return Dipole

How to remove **all** decay electrons and synchrotron light from muon collider arc dipoles

ullet Needed gap is pprox 1 m wide

• Added coils needed to generate wide reverse field Peter McIntyre and Akhdiyor Sattarov Texas A&M University

Vertical trajectories McIntyre

- \bullet To reduce heating below 1 % consider tracks down to 50 GeV
- for p_{\perp} =30 MeV/c vertical dip at 6 m = 8mm
- \bullet But maximum p_{\perp} including emittance is 65 MeV/c so
- \bullet Max drift pprox 17 mm
- So full gaps should be at least 4 cm

Engineering of open-mid-planes (BNL)

GU PTA

Principle of forces

Design for Field Quality

- Designs for LAC Upgrade (CARP)
 - $-\,e.g.\,$ 13.6 T on axis $\,$ 15 T on conductor $\,$ deflections < 150 μm $\,$ b/B < 3 10^{-5} to r=36 mm $\,$
- Design for SBIR POP

-B(axis)=10 T T < 400 Pa Deflections $< 90 \ \mu$ m

Engineering of open-mid-planes (FNAL)

Zlobin

- Two double pancake block-type coils, wound around Ti poles with 22 mm thick interlayer stainless steel plates, are placed inside an Al cage.
- The cage provides the required vertical coil separation and contains holes for cooling pipes on one side and a slot for the beam pipe and an escape pass for the decay particles to the absorber placed in one of the two holes in the iron yoke.
- Forces between coils taken by AIBeMet
- though fewer than shown here
- Mokhov shows that heat deposition in AlBeMet is negligible.
- But scattering may not be

Engineering of open-mid-planes (Texas)

McIntyre

Inner set of windings are levitated, top/bottom windings supported by skyhook

- Geometry similar to GU PTA
- But uses "sky-hooks" to outer structure

Option # 2: Thick tungsten beam pipe

As discussed in 98 Feasibility Study

98 MARS for 4 TeV

Mokhov 98 2+2 TeV distributions vs. angle for different thicknesses of tungsten shield

Shape of distributions approx independent of shield thickness

Attenuation and shape

- At 2+2 TeV
 - gamma radiation from higher E electrons (90 beg) is more than electron radiation (\approx 4:3)
 - $\ensuremath{\text{and}}\xspace$ more focused
 - $-\,up\text{-}down/side$ is $\approx\,1/10$
- at 0.75+0.75 TeV
 - gamma ad. will be relatively much less (e.g. 1:3)
 - $-\operatorname{assume}\,\operatorname{up-down/side}\,\operatorname{still}\,1/10$
- Attenuation length
 - extrapolate to zero
 - initial slope steeper from narrower showers?

Required shield thicknesses

- Initial "Relative powers" (left, right, up, down) adding to 1.0
- \bullet "Desired" powers (left, right, up, down)) adding to 1 %
- Required "Attenuation" s = Desired/Initial
- Required shield "Thickness" as looked up from above plot
- This or like it would meet requirement

Section

- Inside pipe width = 5 cm
- Inside pipe height = 2 cm

Not quite as large as 98 study (14 \times 14 cm) but large

Conclusion

- \bullet Cry efficiency from LAC, including distribution, = 20% x Cannot \approx 0.3 %
- With 10 MW wall we can cool 27 k at 4 beg
- \bullet If 2.5 MW deposited from beam then shield attenuation $\leq 1\%$
- Open mid-plane options:
 - Open mid-plane designs with 3 cm gap deposit too much energy
 - This is NOT backscatter from absorber bars
 - Tracking suggests required full gap at least 4 cm
 - $-\operatorname{Too}$ early to know if it will meet requirements
- Tungsten beam-pipe option
 - For beam pipe 5×2 cm and 1 cm gap, then:
 - Elliptical coil inside \approx 13.8 x 9.1 cm
 - Can certainly meat shielding requirements, but requires large coils