Phenomenology and EDMs

Emanuele Mereghetti

September 15th, 2020

Workshop on Electric and Magnetic Moments

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

Introduction

Standard Model Total Production Cross Section Measurements Status: May 2020

• SM works just fine, over wide energy range

Introduction

neutrino masses

need new sources of CPV

dark matter

< □ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 の Q (* 2/27

EDM experiments worldwide

• current EDM bounds

< $1.8 \cdot 10^{-13} e \text{ fm}$ < $6.2 \cdot 10^{-17} e \text{ fm}$ $\Lambda_{\text{naive}} \sim 10\text{-}100 \text{ TeV}$

イロン 不良 とくほど 不良 とうほ

EDM & pheno: some questions

- 1. complementarity/competition between collider and low-energy?
 - can EDMs/flavor physics guide direct collider searches?
- 2. what is the minimal set of observables to identify BSM CPV?
 - determine/exclude QCD $\bar{\theta}$ term?
 - disentangle key features of microscopic CPV mechanisms
- 3. what theoretical accuracy is necessary not to dilute EDM constraints?
 - Lattice QCD, chiral EFT, nuclear models, ...
- 4. can HL-LHC, next generation EDMs rule out EWBG?

CP violation in EFTs

CPV at colliders

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

SMEFT at dimension 6

X ³		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$		(LL)(LL)		$(\bar{R}R)(\bar{R}R)$		$(LL)(\bar{R}R)$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	1	Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$
$Q_{\tilde{G}}$	$\int f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{n\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{\tau}\tilde{\varphi})$		$Q_{qq}^{(1)}$	$(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	$Q_{\rm fu}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$(\varphi^{\dagger}D^{\mu}\varphi)^{\star}(\varphi^{\dagger}D_{\mu}\varphi)$	$Q_{d\varphi}$	$(\phi^{\dagger}\phi)(\bar{q}_{p}d_{r}\phi)$		$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	$Q_{\delta d}$	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$						$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{ex}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$
Y ² ,2 ²		$\psi^2 X_{i0}$		$v^2 \sigma^2 D$		1	$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$
0.	int of CA CAPP	0	(I all a) al aWI	0(1)	(ati B ca)(I att)				$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$
Q\$G	¢,¢G _{µp} G.	QeW	$(i_p 0, e_r) \neq \nu \nu_{\mu\nu}$	≪µ _(3)	$(\varphi \cdot i D_{\mu} \varphi)(i_p \cdot i_p)$				$Q_{ad}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$
$Q_{\varphi \tilde{G}}$	$\varphi^{\dagger}\varphi G_{\mu\nu}^{\alpha}G^{\alpha\mu\nu}$	Q_{eB}	$(l_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	Q_{gl}	$(\varphi^{i}iD^{i}_{\mu}\varphi)(l_{p}\tau^{*}\gamma^{\mu}l_{r})$						$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$
$Q_{\varphi W} = \varphi^{\dagger} \varphi W^{I}_{\mu\nu} W^{I\mu\nu} = Q_{uG}$		$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e} = (\varphi^{\dagger} i D_{\mu} \varphi)(\bar{e}_{p} \gamma^{\mu} e_{r})$			$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-violating				
$Q_{\varphi \widetilde{W}}$	$\left(\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}\right)$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{\phi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i D_{\mu} \varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$		Q_{lodg}	$(\bar{l}_p^j e_\tau)(\bar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(q_s^{\gamma j})^T C l_t^k\right]$		$[(q_s^{\gamma j})^T C l_t^k]$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} \varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	$(\bar{q}_p \tau^I \gamma^\mu q_r)$		$(\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t})$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k}\right]\left[(u_{s}^{\gamma})^{T}Ce_{t}\right]$		
$Q_{\varphi \tilde{B}}$	$\left(\varphi^{\dagger} \varphi \tilde{B}_{\mu\nu} B^{\mu\nu} \right)$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu} \varphi)(\overline{u}_{p}\gamma^{\mu}u_{r})$		$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[\left(q_{p}^{\alpha}\right)\right]$	$^{i})^{T}Cq_{i}^{i}$	$[!] [(q_s^{\gamma m})^T Cl_t^n]$
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphi W^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{d}_{p} \gamma^{\mu} d_{r})$) Q		$(\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^I\varepsilon)_{jk}(\tau^I\varepsilon)_{mn}$	$[(q_p^{\alpha j})^3$	$\left[Cq_r^{\beta k}\right]\left[(q_s^{\gamma m})^T Cl_t^n\right]$
$Q_{\varphi W B}$ $(\bar{q}^{\dagger} \tau^{I} \varphi W^{I}_{\mu\nu} B^{\mu\nu}) Q_{dB}$ $(\bar{q}_{\rho} \sigma^{\mu\nu} d_{r}) \varphi B_{\mu\nu}$ $Q_{\varphi ad}$		$(i(\tilde{\phi}^{\dagger}D_{\mu}\phi)(\bar{u}_{p}\gamma^{\mu}d_{r}))$		$Q_{logu}^{(3)}(\bar{l}_{p}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t})$			$\varepsilon^{\alpha\beta\gamma} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(u_s^{\gamma})^T C e_t \right]$					

Grzadkowski et al. '10

• full set of dimension 5 and 6 operator known

Buchmuller & Wyler '86, Weinberg '89, de Rujula et al. '91, Grzadkowski et al. '10 ...

- 53 (1350) CP-even, 23 (1149) CP-odd dimension 6 operators
- CPV in light quarks strongly suppressed at colliders, $\sim m_q/v$
- focus on top, gauge boson and Higgs operators

CPV in the top sector

V. Cirigliano, W. Dekens, J. de Vries, EM, '16

- chirality flipping Yukawa (Y) and dipole $(C_G, C_\gamma, C_{Wt}, C_{Wb})$ operators & RH current (ξ)
- · affect a variety of top and Higgs production/decay processes
 - $t\bar{t}, t\bar{t}\gamma, t\bar{t}Z$
 - tīth
 - single top
 - $h \rightarrow \gamma \gamma, gg \rightarrow h$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Direct CPV probes in the top sector

ATLAS arXiv:1707.05393

LHC can probe naively T-odd correlations

• $\boldsymbol{\sigma}_t \cdot (\mathbf{p}_e \times \mathbf{p}_{\nu})$ in single top production

J. Boudreau, et al '13

• spin correlations $(\boldsymbol{\sigma}_t \times \boldsymbol{\sigma}_{\bar{t}}) \cdot \mathbf{p}_t$ in $t\bar{t}$ production

W. Bernreuther, D. Heisler, Z.-G. Si, '15

small backgrounds from absorptive SM diagrams

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Direct CPV probes in the top sector

- total and differential t cross sections probe scales in 0.5-1 TeV range
- sensitive loop-level observables at colliders

 $gg \rightarrow h, h \rightarrow \gamma\gamma$, EW precision

< 3 →

- spin/momentum correlations clean probes of dim-6 CPV operators CMS, arXiv:1601.01107, ATLAS arXiv:1707.05393
- limited by statistics & systematics, could reach % level at HL-LHC

Higgs and gauge bosons

- four $\varphi^{\dagger}\varphi X^{\mu\nu}\tilde{X}_{\mu\nu}$ operators, two *XXX̃* operators
- $C_{\tilde{W}}$ and $C_{\varphi W \tilde{B}}$ modify WWZ and WW γ couplings

already probed at LEP, in WW spin correlations

• $C_{\varphi,\tilde{X}}$ affect Higgs production and decay

$$h \to ZZ^* \to 4\ell, gg \to h$$

- CPV probed in angular distributions in $pp \rightarrow h + 2j$, $pp \rightarrow Vh$, $h \rightarrow 4\ell$
- $C_{\tilde{G}}$ difficult to probe directly, $pp \rightarrow 3j$?

Higgs and gauge bosons

Bernlochner et al, '19, Cirigliano et al, '19

HL-LHC report arXiv:1902.00134

- current limits $\Lambda \sim v$
- HL-LHC will improve by a factor of 10

start pushing into TeV scale

EDMs of heavy quarks and leptons

• Belle II will improve τ EDM by a factor of 40

 $-2.2 \cdot 10^{-4} < d_{\tau} < 4.5 \cdot 10^{-4} \, e \, \mathrm{fm} \rightarrow 10^{-5} \, e \, \mathrm{fm}$

- new ideas to measure EDMs of c and b baryons at LHCb
- measure spin precession of Λ_c channeled in bent crystals
- first direct probe of heavy baryon EDMs

EDMs of heavy quarks and leptons

• Belle II will improve τ EDM by a factor of 40

 $-2.2 \cdot 10^{-4} < d_{\tau} < 4.5 \cdot 10^{-4} \, e \, \text{fm} \rightarrow 10^{-5} \, e \, \text{fm}$

- new ideas to measure EDMs of c and b baryons at LHCb
- measure spin precession of Λ_c channeled in bent crystals
- first direct probe of heavy baryon EDMs

CPV at low-energy

Low-energy EFT for flavor-diagonal CPV

• one dim-4 operator: QCD $\bar{\theta}$ term

$$\mathcal{L}_{\mathcal{T}^4} = m_* \bar{\theta} \bar{q} i \gamma_5 q$$

• 9 (+ 10 w. strangeness) hadronic operators @ $\mathcal{O}(v^2/\Lambda^2)$:

· leptonic operators

$$\mathcal{L} = \sum_{\ell=e,\mu,\tau} \frac{m_l}{\nu^2} \tilde{c}_{\gamma}^{(\ell)} \bar{\ell} \sigma^{\mu\nu} \gamma^5 \ell F_{\mu\nu} + C_S \bar{q} q \, \bar{\ell} i \gamma_5 \ell + \dots$$

Running to low energy

• one-loop matching and running of SMEFT onto low-energy known

W. Dekens and P. Stoffer, '19

• Higgs operators contribute at one EW loop

$$\tilde{c}_{\gamma}^{(e)} = \left(-1.4 \operatorname{Im} C_{\varphi \tilde{B}} - 1.5 \operatorname{Im} C_{\varphi \tilde{W}} + 3.3 \operatorname{Im} C_{\varphi \tilde{W} B} + 0.14 \operatorname{Im} C_{\tilde{W}}\right) \cdot 10^{-2}$$

• top operators at one/two-loop

$$\tilde{c}_{\gamma}^{(e)} = (3.8 \text{Im} C_{\gamma t} - 4.4 \text{Im} C_{W t} + 0.4 \text{Im} Y) \cdot 10^{-4}$$

$$C_{\tilde{G}} = -8.8 \cdot 10^{-4} \text{Im} C_{g t}$$

From quarks to nucleons

• only a handful of operators at LO in chiral/pionless EFT

$$\mathcal{L}_{f}^{(1)} = \bar{N} \left(\bar{d}_{n} \frac{1 - \tau_{3}}{2} + \bar{d}_{p} \frac{1 + \tau_{3}}{2} \right) \boldsymbol{\sigma} \cdot \mathbf{E} N - \frac{\bar{g}_{0}}{F_{\pi}} \bar{N} \boldsymbol{\pi} \cdot \boldsymbol{\tau} N - \frac{\bar{g}_{1}}{F_{\pi}} \pi_{3} \bar{N} N + \dots$$

 \bar{d}_n, \bar{d}_p neutron & proton EDM,

 \bar{g}_0, \bar{g}_1 pion loop to nucleon & proton EDMs,

• determine EDMs of nucleons, light nuclei, Schiff moments of heavy nuclei

relative size of the couplings depends on chiral/isospin properties of f source

From quarks to nucleons

• only a handful of operators at LO in chiral/pionless EFT

$$\mathcal{L}_{f}^{(2)} = C(^{2S+1}S_{J}, ^{2S'+1}P_{J}) (N^{T}P_{2S+1}S_{J}N)^{\dagger} N^{T}P_{2S'+1}P_{J}N^{T}$$

 \bar{g}_0, \bar{g}_1 pion-range TV potential

C short-range TV potential in 5 S-P transition channels

• determine EDMs of nucleons, light nuclei, Schiff moments of heavy nuclei

relative size of the couplings depends on chiral/isospin properties of f source

Status of low-energy couplings

* Pospelov and Ritz, '05, Haisch and Hala, '19

- large theory error on LECs from most operators, but strong LQCD effort on $d_{n,p}$, $\bar{g}_{0,1}$
- nucleon-nucleon not yet in reach

see Boram Yoon's talk

· nuclear EDMs sensitive to one- and two-body CPV couplings

$$d_A = lpha_n(A)d_n + lpha_p(A)d_p + a_0(A)erac{ar{g}_0}{F_\pi^2} + a_1(A)erac{ar{g}_1}{F_\pi^2} + \dots$$

- different nuclei have different sensitivities to $\bar{g}_{0,1}$, *C* e.g. $a_0(d) = 0$
- *d_d*: good agreement between different pheno & chiral nuclear potentials
 C. P. Liu and R. Timmermans, '05; J. de Vries *et al*, '11; J. Bsaisou *et al*, '13, J. Bsaisou *et al*, '15; N. Yamanaka and E. Hiyama, '15, M. Viviani and A. Gnech, '19
- larger uncertainties in the three-nucleon system

J. de Vries, A. Gnech, S. Shain, '20

イロン イロン イヨン イヨン

Э

EDMs of diamagnetic atoms

Nucl.	1	3est valu	e	Range					
	a_0	a_1	a_2	a_0	a_1	a_2			
¹⁹⁹ Hg	0.01	± 0.02	0.02	0.005 - 0.05	-0.03 - +0.09	0.01 - 0.06			
^{129}Xe	-0.008	-0.006	-0.009	-0.0050.05	-0.0030.05	-0.0050.1			
225 Ra	-1.5	6.0	-4.0	-16	4 - 24	-315			

from M. Ramsey-Musolf, J. Engel, U. van Kolck, '13

EDM depends on nuclear Schiff moment

$$S = -\frac{m_N g_A}{F_{\pi}} \left(a_0 \frac{\bar{g}_0}{F_{\pi}} + a_1 \frac{\bar{g}_1}{F_{\pi}} + a_2 \frac{\bar{g}_2}{F_{\pi}} \right) e \, \text{fm}^3 + (\alpha_n d_n + \alpha_p d_p) \, \text{fm}^2$$

- π -N contribs. affected by large theory uncertainties
- no ab initio calculations at the moment

hard calculations!

• single nucleon contrib. know at 5% accuracy

V. F. Dmitriev and R. A. Senkov, '03

EDM bounds on top and Higgs CPV

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Constraints on weak gauge-Higgs operators

- · low-energy observables not affected by large theory uncertainties
- eEDM dominates single coupling analysis
- collider not competitive

Constraints on weak gauge-Higgs operators

- EDMs constrain 2 directions d_n , d_{Hg} and d_{Ra} largely degenerate
- need LEP, $B \rightarrow X_s \gamma$ or LHC to close free directions

strong correlations to avoid EDMs

イロン 人間 とくほ とくほ とうほ

EDM bounds on top chromo-dipole moment

- strong cancellations between Weinberg and qCEDM contribs. to *d_n* with current theory errors
- no limit from d_n , $|\text{ImC}_g| < 5 \cdot 10^{-3}$ from d_e

EDM bounds on top chromo-dipole moment

- strong cancellations between Weinberg and qCEDM contribs. to *d_n* with current theory errors
- no limit from d_n , $|\text{ImC}_g| < 5 \cdot 10^{-3}$ from d_e
- reducing error on Weinberg ME from 90% to 50% has dramatic effects

EDMs of charmed baryons

- charmed baryon EDMs could originate from variety of sources
- charm (chromo-)EDM induces Weinberg three-gluon at two (one) loop, severely constrained by *d_n*

$$|\tilde{d}_c| \lesssim 1.0 \cdot 10^{-22} \text{ cm}, \qquad |d_c| \lesssim 1.5 \cdot 10^{-21} e \text{ cm}$$

F. Sala, '13; H. Gisbert and J. Ruiz Vidal, '20

Disentangling CPV sources at low-energy

◆□ > ◆□ > ◆三 > ◆三 > 三 - つくで

Disentangling CPV mechanisms: $\bar{\theta}$ term

- $d_n = -(1.5 \pm 0.7) \cdot 10^{-3} \,\bar{\theta} \, e \, \text{fm}$ $d_p = (1 \pm 1) \cdot 10^{-3} \,\bar{\theta} \, e \, \text{fm}$
- J. Dragos, T. Luu, A. Shindler, J. de Vries, A. Yousif, '19.

Q1: is a QCD $\bar{\theta}$ term?

• d_n and d_p can rule out $\bar{\theta}$

need to reduce LQCD uncertainties!

- · light nuclear/atomic EDMs can show source-specific patterns
- $\mathcal{O}(20\%)$ uncertainties sufficient to discriminate!

Disentangling CPV mechanisms: $\bar{\theta}$ term

Q1: is a QCD $\bar{\theta}$ term?

• d_n and d_p can rule out $\overline{\theta}$

need to reduce LQCD uncertainties!

- · light nuclear/atomic EDMs can show source-specific patterns
- $\mathcal{O}(20\%)$ uncertainties sufficient to discriminate!

Disentangling CPV mechanisms: $\bar{\theta}$ term

Q1: is a QCD $\bar{\theta}$ term?

• d_n and d_p can rule out $\bar{\theta}$

need to reduce LQCD uncertainties!

- light nuclear/atomic EDMs can show source-specific patterns
- $\mathcal{O}(20\%)$ uncertainties sufficient to discriminate!

Disentangling CPV mechanisms: top couplings

- observation of d_e and d_n in next generation of experiments: no CPV top Yukawa or top weak dipole moment
- d_e and large $d_d \sim 5d_n$ could signal Y_t

need large number of sensitive EDM experiments and precise nuclear/hadronic theory!

EDMs and EW Baryogenesis

2HDM with CPV top Yukawa ρ_{tt}

K. Fuyuto, W.-S. Hou, E. Senaha, '17

- EDMs provide a severe challenge
- need cancellations between large CPV couplings responsible for EWBG & small 1st generation couplings
- can be falsified with improved neutron/nuclear EDMs

EDMs and EW Baryogenesis

2HDM with CPV top Yukawa ρ_{tt} avoid eEDM with electron ρ_{ee}

$$\operatorname{Im} \rho_{ee} = r \frac{y_e}{y_t} \operatorname{Im} \rho_{tt}$$

K. Fuyuto, W.-S. Hou, E. Senaha, '19

- EDMs provide a severe challenge
- need cancellations between large CPV couplings responsible for EWBG & small 1st generation couplings
- can be falsified with improved neutron/nuclear EDMs

EDMs and EW Baryogenesis

- EWBG requires new light dofs to trigger first order phase transition
- CP asymmetry cannot be studied in SMEFT

J. de Vries, M. Postma, J. van de Vis, G. White, '17

· possible to hide CPV in new sector with very small couplings to SM

Conclusion

CPV at colliders

- HL-LHC will reach % level accuracy in CP-sensitive observables
- LHCb, Belle 2 will explore CPV in heavy quark/leptons sector
- naively less sensitive than *d_e*, *d_n*, but study cancellation regions, free directions

Lattice QCD

- bring theoretical error on d_n , d_p , $\bar{g}_{0,1}$ under control
- longer time-frame for four-nucleon operators

direct calculations of light-nuclear EDMs? TV NN scattering in S-P transitions?

Nuclear theory

- investigate theory error in $A \ge 3$, push *ab initio* to larger A
- can *ab initio* methods help the calculation of Schiff moments?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Backup

▲口→ ▲圖→ ▲国→ ▲国→ 三国一

EDMs of diamagnetic atoms

J. Dobaczewski, J. Engel, M. Kortelainen, P. Becker, '18

イロト イヨト イヨト

크

• error in ²²⁵Ra reduced by correlations w. nuclear properties e.g. ²²⁴Ra octupole moment

$$a_1 \in [4, 24] \Longrightarrow [1, 5]$$

EDM bounds on the top weak-dipole C_{Wt}

< □ > < □ > < □ > < □ > < □ > < □ > = □

- very strong constraints from *d_e* even at two-loop weak running!
- · constraints essentially free on nuclear/hadronic uncertainties