

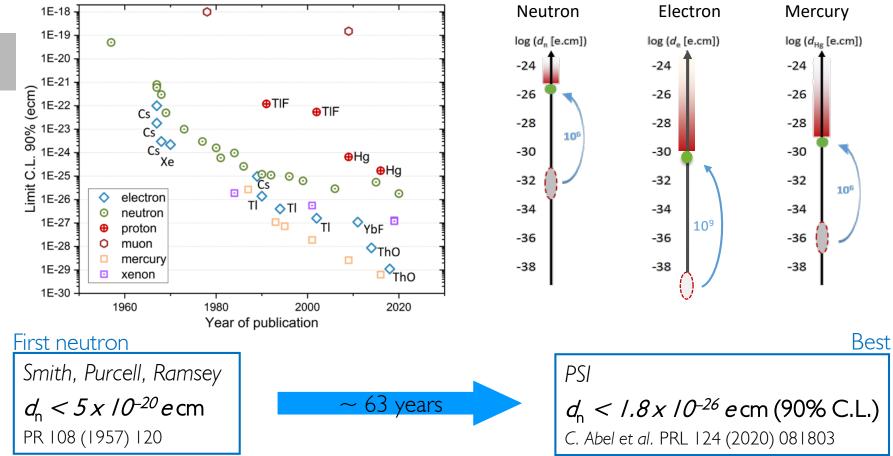
P. Schmidt-Wellenburg

Challenges and opportunities in future searches for the electric dipole moment of the neutron

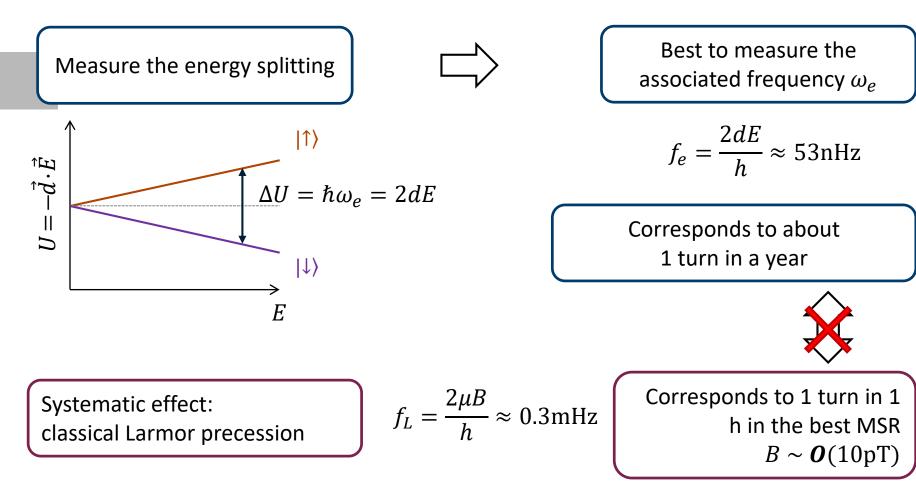
Philipp Schmidt-Wellenburg (PSI) | Snowmass21 workshop | 15.09.2020

PAUL SCHERRER INSTITUT

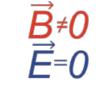
A brief history of EDM searches



EDM measurement basics

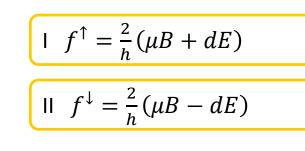


Use a magnetic field as reference



ħω(0)

-ħ/2

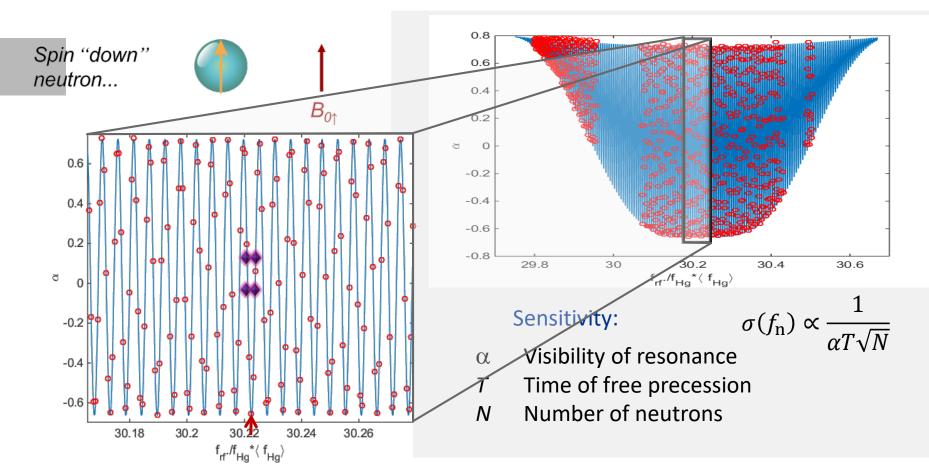


$$\boxed{ \text{II-I} \quad \Delta f = \frac{2}{h} (\mu \Delta B - 2dE) }$$

$$\mathbf{\nabla}$$

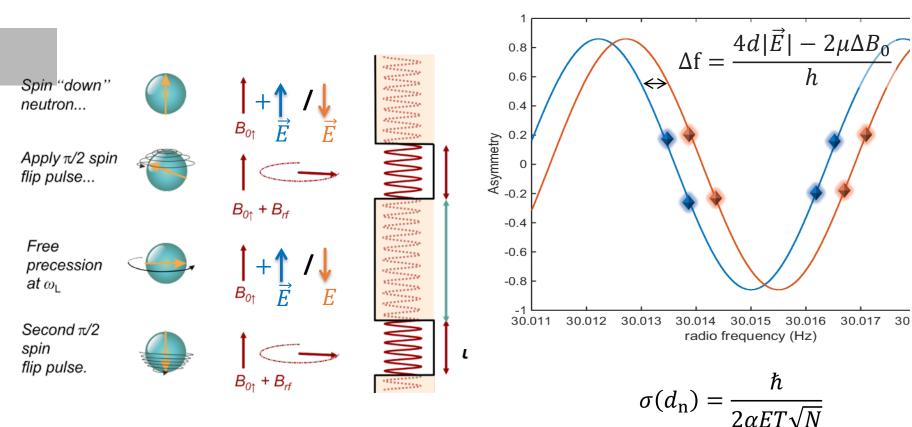
$$d = \frac{h\Delta f}{4E}$$

Ramsey's technique to measure f



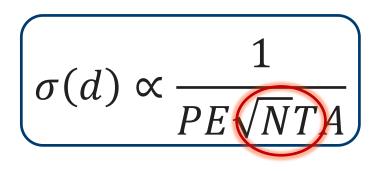
Ph

Coupling of the spin to an electric field

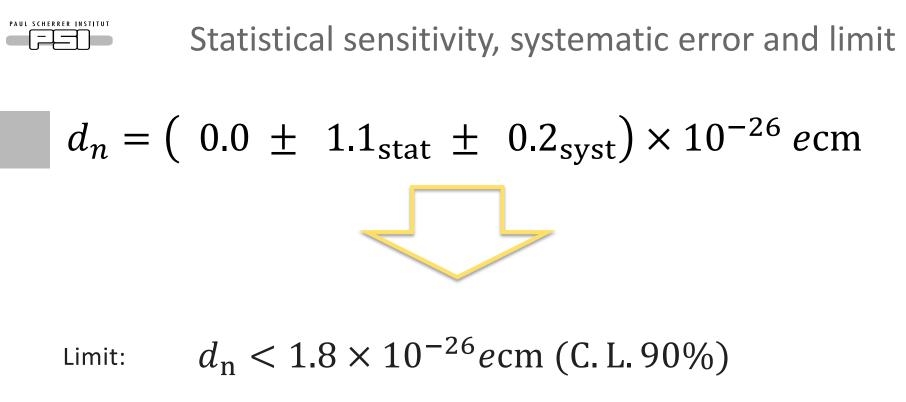


PAUL SCHERRER INSTITUT

Sensitivity for an EDM



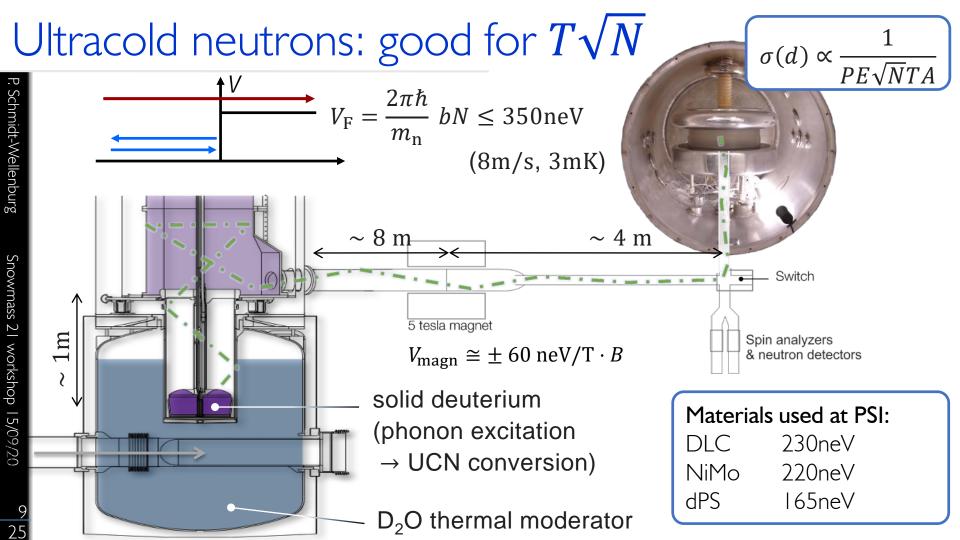
- *P:* Initial polarization *E:* Electric field strength *N:* Number of particles *T: Observation time*
 - A: Analyzing power

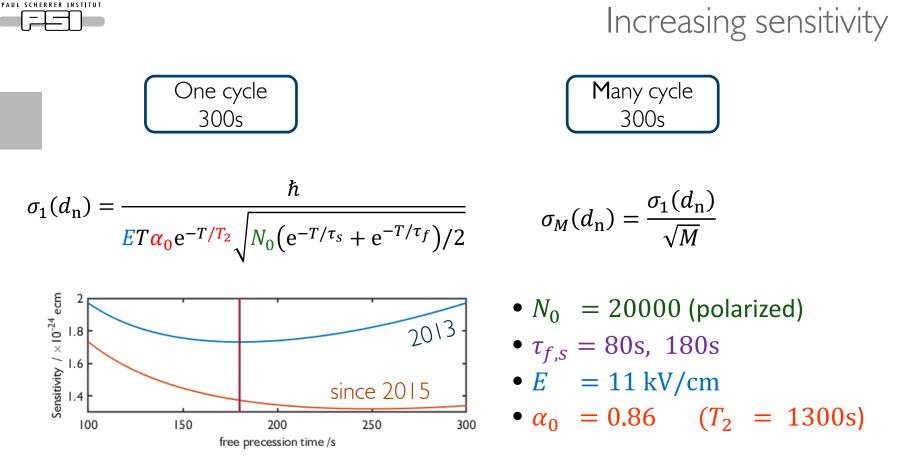


Philipp Schmidt-Wellenburg (PSI)|

Snowmass 21 workshop | 15.09.2020

For a limit better than $1 \times 10^{-26} ecm$ we need to design an apparatus with a statistical sensitivity of better than $0.5 \times 10^{-26} ecm$ as some unthought systematic could always appear.





Philipp Schmidt-Wellenburg (PSI)| Snowmass 21 workshop|15.09.2020

What seems possible in a single shot?

Number of neutrons N:

Higher density and/or larger volume \rightarrow more neutrons

New UCN sources:

- superthermal sources based on D₂ or sfHe
- Transport losses/dilution
- Ramsey cell = source (see SNS talk)

, 0			
Location	Туре	Density	Year of operation
Mainz	~~~	3	2007
Grenoble			
PF2	\$	20	1986
SUN2		8	2012
SuperSun		7/130	2021/202?
LANL		80	yes
PSI		22	yes
TRIUMF			

What seems possible in a single shot?

Number of neutrons N:

Higher density and/or larger volume \rightarrow more neutrons

New UCN sources:

- superthermal sources
 based on D₂ or sfHe
- Transport losses/dilution
- Ramsey cell = source
 (see SNS talk)

Needs matching of source volume to experiment volume, other wise too strong dilution.

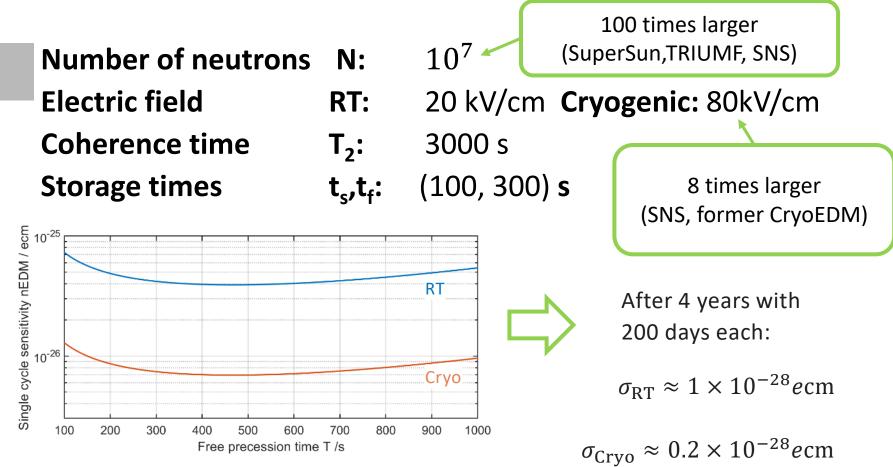
Neutron spin coherence function of cell radius \rightarrow good control of gradients:

 $\frac{1}{T_{2,\text{mag}}} = \frac{\frac{8R^3\gamma_n^2}{9\pi v}}{9\pi v} (G_{1,-1}^2 + G_{1,1}^2) + \frac{\mathcal{H}^3\gamma_n^2}{16v} G_{1,0}^2$

ப்

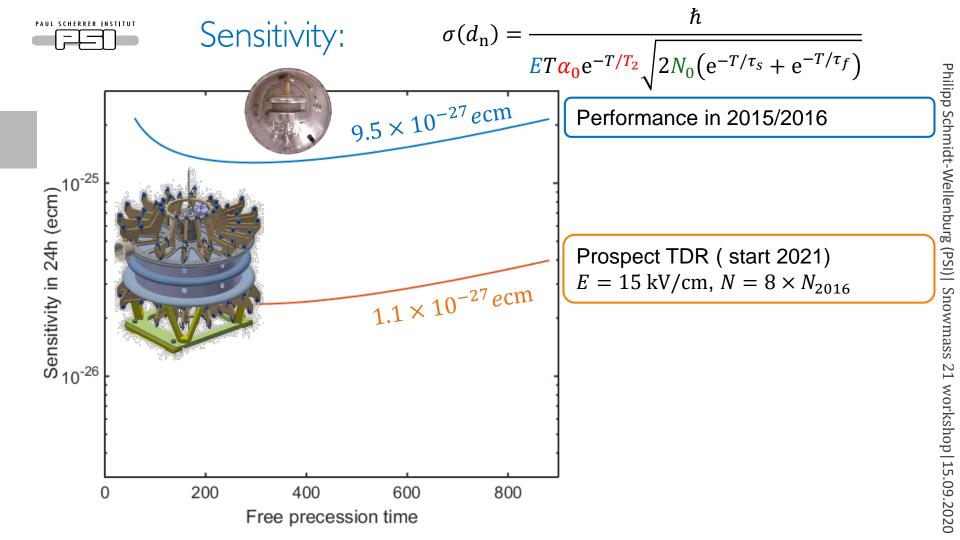
Abel et al., PRA99(2019)042112

What seems possible in a single shot?



ப

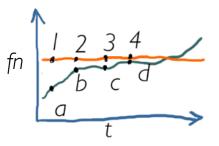
Abel et al., PRA99(2019)042112

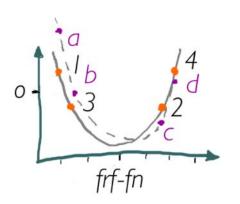


 Sensitivity for many cycles ideal case:

$$\sigma(d_{\rm n}) = \frac{\hbar}{2\alpha TE\sqrt{NM}}$$

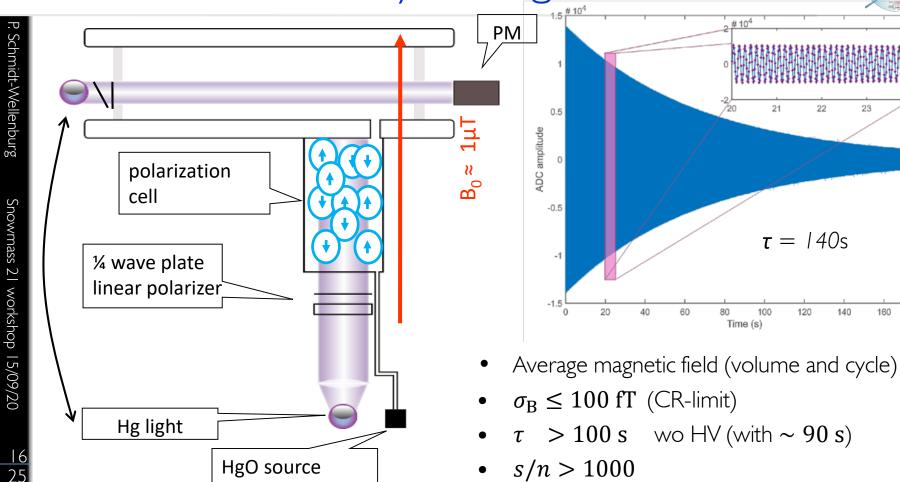
Only if magnetic field is stable enough.
 (Good fit with orange, bad fit with purple)

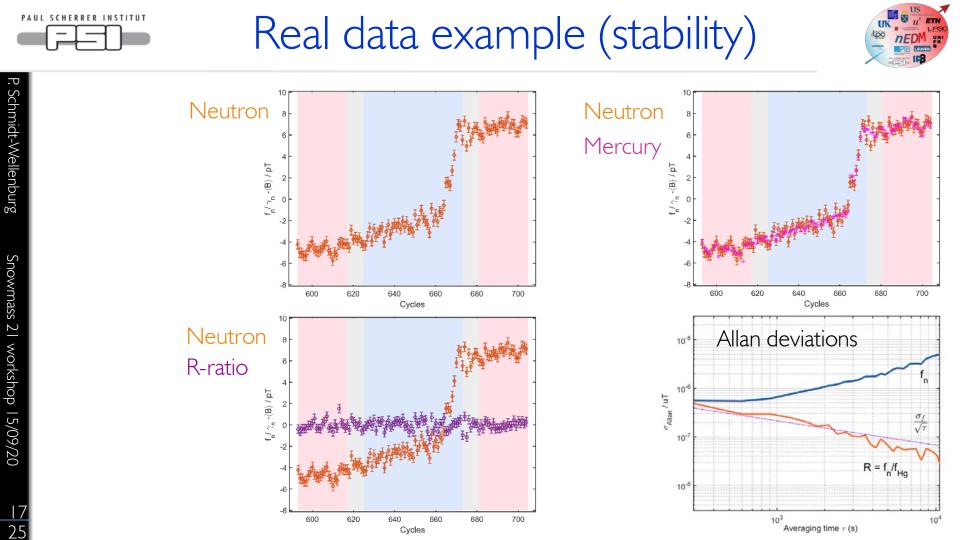




orá

Mercury comagnetometer





PAUL SCHERRER INSTITUT

25

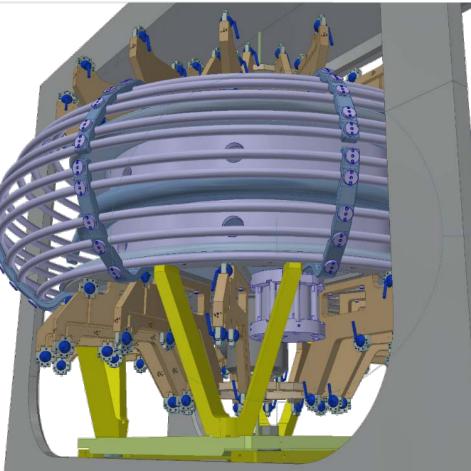
The n2EDM at PSI

Large active magnetic shield

- Bz, By, Bx
- 5 linear gradients
- About 520 Wire Paths
- Total of 54km Wires
- 2.6t of wire
- 840m Cable Trays
- Several kW Heat

Double chamber with Cs-OPM

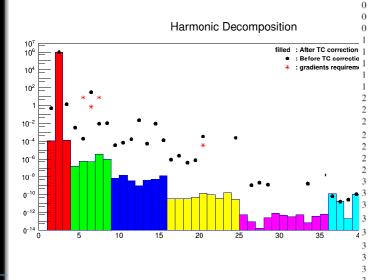
- Two large chamber N = 120000
- Hg co-gradiometer
 Cancels many systematics
 but leads to motional false EDM
 - Order 100 Cs-OPM Field optimization & extraction higher order gradients to correct for **motional false EDM**



Excellent B-field uniformity

PHYSICAL REVIEW A 99, 042112 (2019)

Schmidt-Wellenburg



Magnetic-field generation

64 correction coils

Harmonic polynomials

Optimized main magnetic field coil MAGNETIC-FIELD UNIFORMITY IN NEUTRON ...

TABLE IV. The basis of harmonic polynomials sorted by degree in cylindrical coordinates.

ADEL 17. The basis of harmonic polynomials solide by degree in cynharcar coordinaes.				
m	$\Pi_{ ho}$	Π_{ϕ}	Π	()
-1	$\sin \phi$	$\cos\phi$	0	Abel
0	0	0	1	ă
1	$\cos\phi$	$-\sin\phi$	0	Ē
$^{-2}$	$\rho \sin 2\phi$	$\rho \cos 2\phi$	0	еţ
-1	$z \sin \phi$	$z\cos\phi$	$\rho \sin \phi$	പ
0	$-\frac{1}{2}\rho$	0	z	<u>al</u> .,
1	$z \cos \phi$	$-z\sin\phi$	$\rho \cos \phi$	
2	$\rho \cos 2\phi$	$-\rho \sin 2\phi$	0	ਨੱ
-3	$\rho^2 \sin 3\phi$	$\rho^2 \cos 3\phi$	0	$\mathbf{\Sigma}$
-2	$2\rho z \sin 2\phi$	$2\rho z \cos 2\phi$	$\rho^2 \sin 2\phi$	0
-1	$\frac{1}{4}(4z^2-3\rho^2)\sin\phi$	$\frac{1}{4}(4z^2-\rho^2)\cos\phi$	$2\rho z \sin \phi$	PRA 99(2019)0421
0	$-\rho z$	0	$-\frac{1}{2}\rho^{2}+z^{2}$	$\widehat{\mathbf{N}}$
1	$\frac{1}{4}(4z^2-3\rho^2)\cos\phi$	$\frac{1}{4}(\rho^2 - 4z^2)\sin\phi$	$2\rho z \cos \phi$	Ö
2	$2\rho z \cos 2\phi$	$-2\rho z \sin 2\phi$	$\rho^2 \cos 2\phi$	
3	$\rho^2 \cos 3\phi$	$-\rho^2 \sin 3\phi$	0	$\underline{9}$
-4	$\rho^3 \sin 4\phi$	$\rho^3 \cos 4\phi$	0	Ó
-3	$3\rho^2 z \sin 3\phi$	$3\rho^2 z \cos 3\phi$	$\rho^3 \sin 3\phi$	4
-2	$\rho(3z^2-\rho^2)\sin 2\phi$	$\frac{1}{2}\rho(6z^2-\rho^2)\cos 2\phi$	$3\rho^2 z \sin 2\phi$	\geq
$^{-1}$	$\frac{1}{4}z(4z^2-9\rho^2)\sin\phi$	$\frac{1}{4}z(4z^2-3\rho^2)\cos\phi$	$\rho(3z^2-\frac{3}{4}\rho^2)\sin\phi$	12
0	$\frac{3}{8}\rho(\rho^2-4z^2)$	0	$\frac{1}{2}z(2z^2-3\rho^2)$	Ν
1	$\frac{1}{4}z(4z^2-9\rho^2)\cos\phi$	$\frac{1}{4}z(3\rho^2-4z^2)\sin\phi$	$\rho(3z^2-\frac{3}{4}\rho^2)\cos\phi$	
2	$\rho(3z^2-\rho^2)\cos 2\phi$	$\frac{1}{2}\rho(\rho^2-6z^2)\sin 2\phi$	$3\rho^2 z \cos 2\phi$	
3	$3\rho^2 z \cos 3\phi$	$-3\rho^2 z \sin 3\phi$	$\rho^3 \cos 3\phi$	
4	$\rho^3 \cos 4\phi$	$-\rho^3 \sin 4\phi$	0	

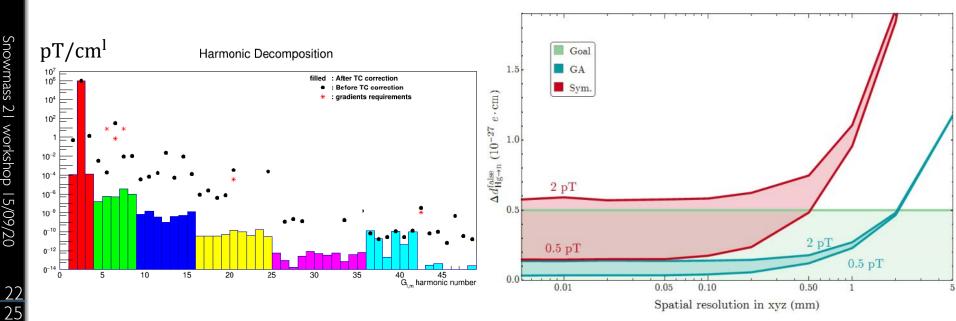
Excellent B-field uniformity

Magnetic-field generation

- Optimized main magnetic field coil
- 64 correction coils

Magnetic-field measurement

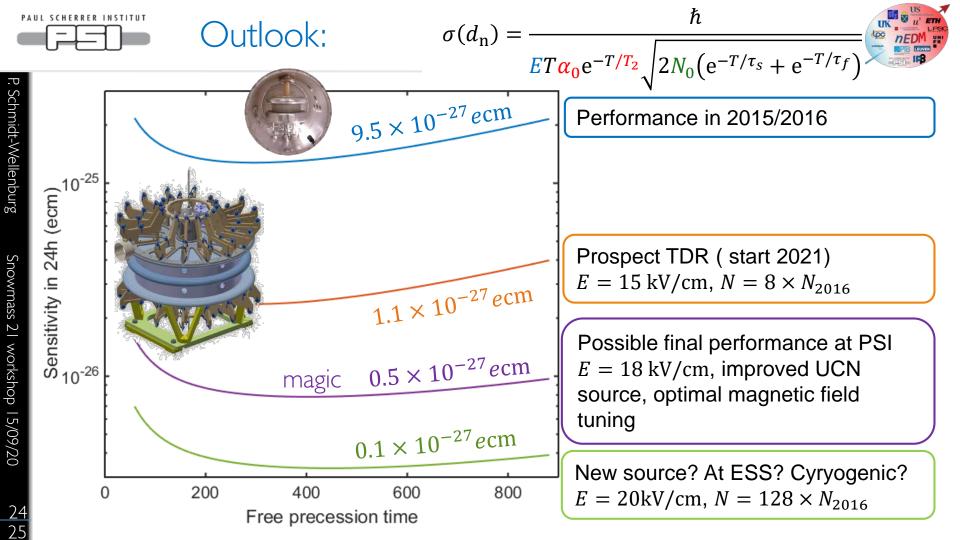
- Order 100 CsM sensors
- Optimal placement



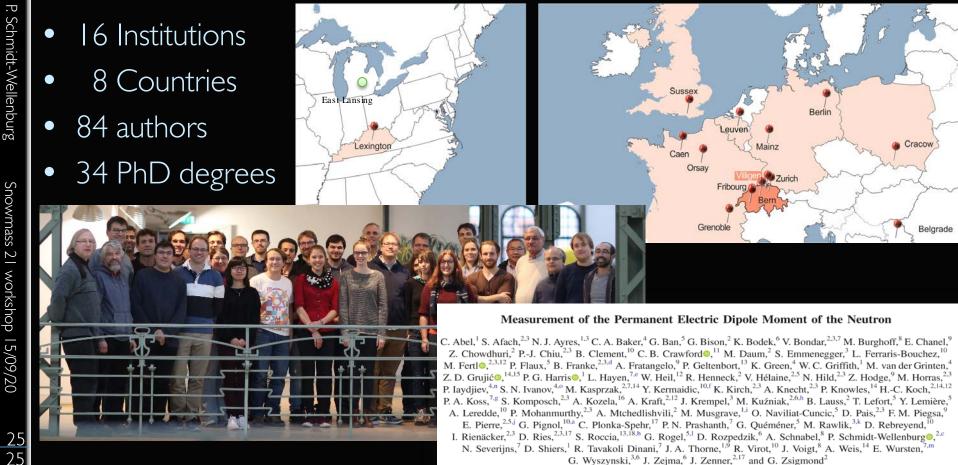
PAUL SCHERRER INSTI

20

Larger cell \rightarrow more neutrons Pignol PLB793 (2019) False EDM from Hg: 15 ecmagic $d_{n \leftarrow Hg}^{\text{false}} = \frac{\hbar \gamma_n \gamma_{Hg}}{2c^2} \langle x B_x + y B_y \rangle$ $= \frac{\hbar \gamma_n \gamma_{Hg}}{32c^2} D^2 G_{\text{eff}}$ 10 440 -27 $d_{
m n}^{
m false}/10^{-}$ G_{10} = 1 pT/cmGo to magnetic field ($\omega = \gamma B$) where false EDM is zero: 5 15 20 10 25 $B_0 / \mu T$ $d_{n \leftarrow Hg}^{\text{false}} = \frac{\hbar \gamma_n \gamma_{Hg}}{2c^2} \int_0^\infty \langle B_x(0) v_x(t) + B_y(0) v_y(t) \rangle \cos \omega t dt$



The collaboration



PAUL SCHERRER INSTITUT

o

0

Backup

0

• Center of mass offset
• Center of mass offset
• Non-adiabaticity

$$R_{\pm} = \frac{f_n}{f_{Hg}} = \left| \frac{\gamma_n}{\gamma_{Hg}} \right| (1 \pm \delta_{\text{EDM}} \pm \delta_{\text{EDM}}^{\text{false}} + \delta_Q + \delta_G + \delta_T + \delta_E + \delta_{LS} + \delta_I + \delta_P + \delta_{AC})$$

$$\frac{\gamma_{Hg}}{2\pi} \approx 8 \text{ Hz/}\mu T$$

$$\frac{199}{V_{Hg}} = UCN$$

$$\frac{\gamma_n}{2\pi} \approx 30 \text{ Hz/}\mu T$$

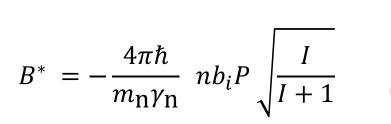
$$\frac{\gamma_n}{2\pi} \approx 30 \text{ Hz/}\mu T$$

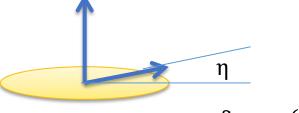
$$R \cdot \left| \frac{\gamma_n}{\gamma_{Hg}} \right| - 1 = \delta_G + \delta_T = \pm \frac{\langle z \rangle G_{1,0}}{B_0} + \frac{\langle B_T^2 \rangle}{2B_0^2}$$
Needs to be known for each measurement

Ρ

27 25

Pseudo magnetic field from incoherent scattering length

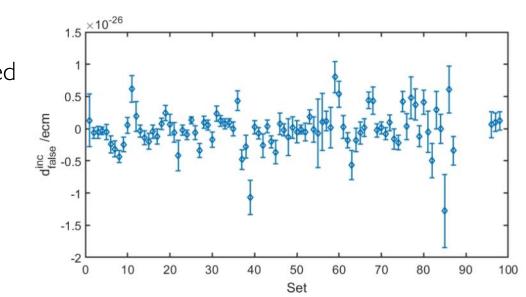




 $\delta\eta = \eta(+E) - \eta(-E)$

- $b_i = \pm 15.5 \text{ fm}$
- $nP(^{199}Hg \times \text{polarization})$ extracted from data cycle by cycle

$$d_{n}^{\text{false}} = \hbar \frac{\gamma_{n}}{4E} B^{*} \cdot \delta \eta$$
$$< 7 \times 10^{-28} e \text{cm}$$



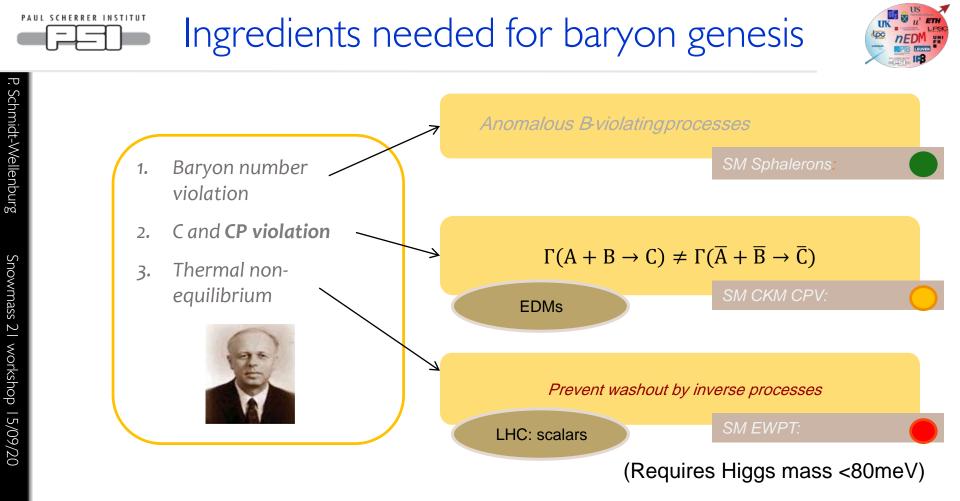
orá

The crossing point analysis takes care of a large part of the motional false EDM:

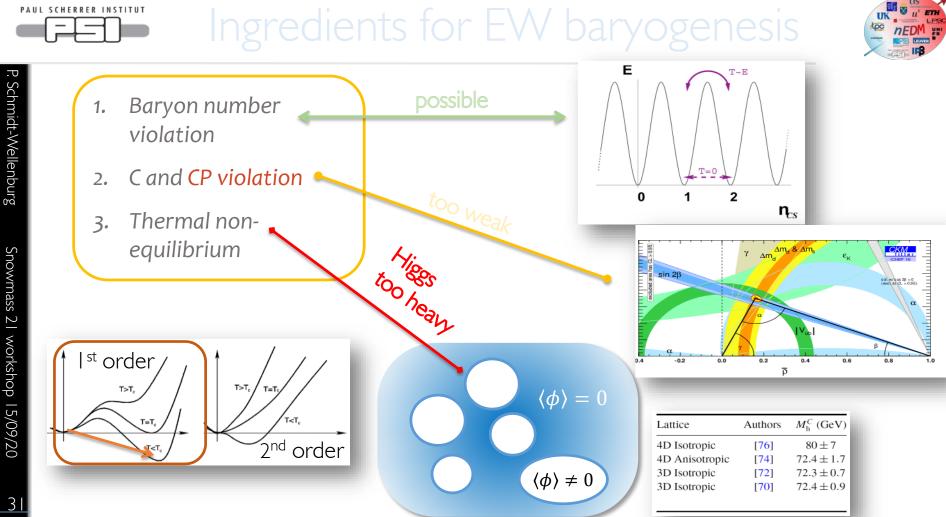
$$d_{n \leftarrow Hg}^{\text{false}} = \frac{\hbar \gamma_n \gamma_{Hg}}{32c^2} D^2 \left[G_g + G_{30} \left(\frac{D^2}{16} + \frac{H^2}{10} \right) + G_{50} \left(\frac{H^4}{28} - \frac{D^2 H^2}{96} - \frac{5D^4}{256} \right) \right]$$

Corrected by
crossing point fit

Corrected set for set using map analysis



<u>30</u> 25

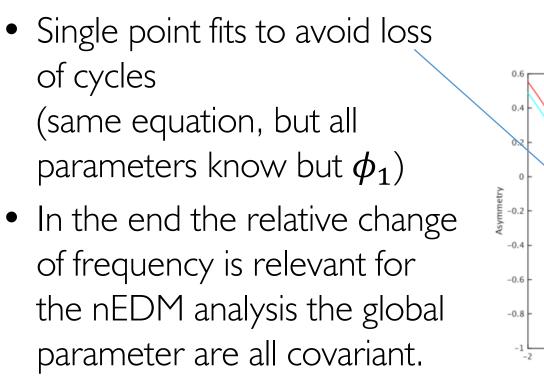


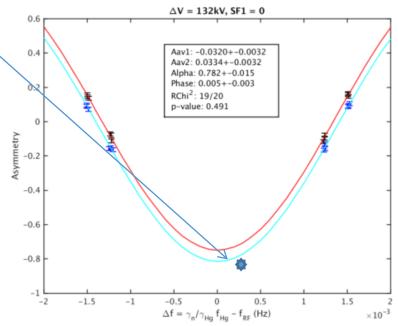
Snowmass 21 workshop 15/09/20

31 25

PAUL SCHERRER INSTITUT

Frequency for each cycle





Data point below cosine: $A_i < (A_{SF2} - \alpha)$

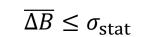
S

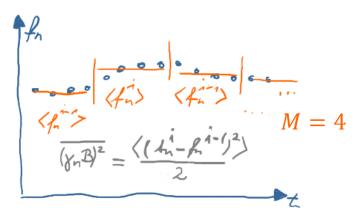
Sensitivity versus Stability

- P. Schmidt-Wellenbur
- Sensitivity for many cycles ideal case:

$$\sigma_{\rm stat}(B) = \frac{1}{\gamma_{\rm n} \alpha T \sqrt{NM}}$$

• Requires:





Allan deviation:

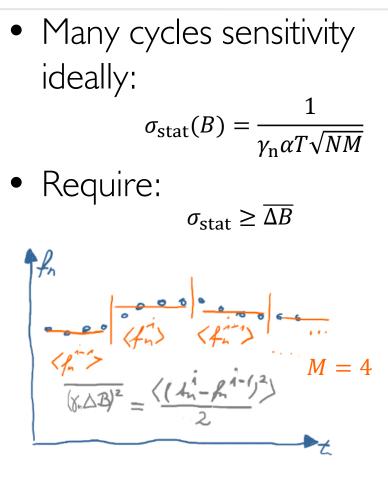
$$\sigma_{AD}(M) = \sqrt{\frac{\left\langle \left(f_i(M) - f_{i-1}(M)\right)^2 \right\rangle}{2}}$$

Choose *M* such that:

 $\sigma_{\text{stat}}(M) \geq \sigma_{AD}(M)$

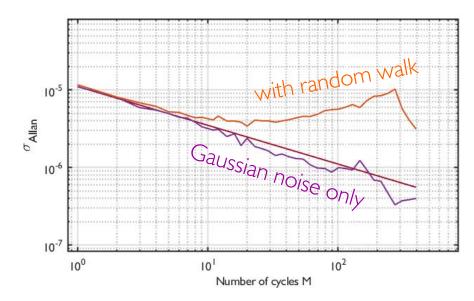
5/09/20

25



Allan deviation:

$$\sigma_{AD}(M) = \sqrt{\frac{\left\langle \left(f_i(M) - f_{i-1}(M)\right)^2\right\rangle}{2}}$$



Snowmass 2

workshop 15/09/20

25

The full covariant matrix C

$$A_i = A_{\rm av} - \alpha \cos\left(\frac{\omega_{\rm rf} - \omega_{\rm cor}}{\Delta \nu} + \phi\right) \rightarrow f = \frac{\Delta \nu}{\pi} \left[\arccos\left(\frac{(A_{\rm av} - A_i)}{\alpha}\right) + \phi \right]$$

$$C = C_{\alpha} + C_{A_i} + C_{A_{av}} + C_{\phi}$$

 $C_{A_{\mathrm{av}},ij} = \frac{\mathrm{d}f}{\mathrm{d}A_{\mathrm{av},i}} \cdot \frac{\mathrm{d}f}{\mathrm{d}A_{\mathrm{av},j}} \cdot \delta A_{\mathrm{av},i} \,\delta A_{\mathrm{av},j}$

Remember there are four different A_{av}

$$=\frac{\Delta \nu^{2} \delta A_{\text{av},i} \, \delta A_{\text{av},j}}{\pi^{2}} \left(\alpha^{2} - \left(A_{\text{av},i} - A_{i}\right)^{2}\right)^{-1/2} \left(\alpha^{2} - \left(A_{\text{av},j} - A_{j}\right)^{2}\right)^{-1/2}$$

<u>35</u> 25

The full covariant matrix C

$$A_i = A_{\rm av} - \alpha \cos\left(\frac{\omega_{\rm rf} - \omega_{\rm cor}}{\Delta \nu} + \phi\right) \rightarrow f = \frac{\Delta \nu}{\pi} \left[\arccos\left(\frac{(A_{\rm av} - A_i)}{\alpha}\right) + \phi \right]$$

$$C = C_{\alpha} + C_{A_i} + C_{A_{av}} + C_{\phi}$$

$$C_{\alpha,ij} = \frac{\mathrm{d}f}{\mathrm{d}\alpha_i} \cdot \frac{\mathrm{d}f}{\mathrm{d}\alpha_j} \cdot \delta\alpha^2 = \frac{\Delta\nu^2 \delta\alpha^2}{\alpha^2 \pi^2} \frac{\left(A_{\mathrm{av},i} - A_i\right)}{\sqrt{\alpha^2 - \left(A_{\mathrm{av},i} - A_i\right)^2}} \frac{\left(A_{\mathrm{av},j} - A_j\right)}{\sqrt{\alpha^2 - \left(A_{\mathrm{av},j} - A_j\right)^2}}$$

$$C_{\phi,ij} = \frac{\mathrm{d}f}{\mathrm{d}\phi_i} \cdot \frac{\mathrm{d}f}{\mathrm{d}\phi_j} \cdot \delta\phi\delta\phi = \frac{\Delta\nu^2\delta\phi^2}{\alpha^2\pi^2}$$

Remember there are four different A_{av}

25

P. Schmidt-Wellenburg

Snowmass 2 |

• Calculate R

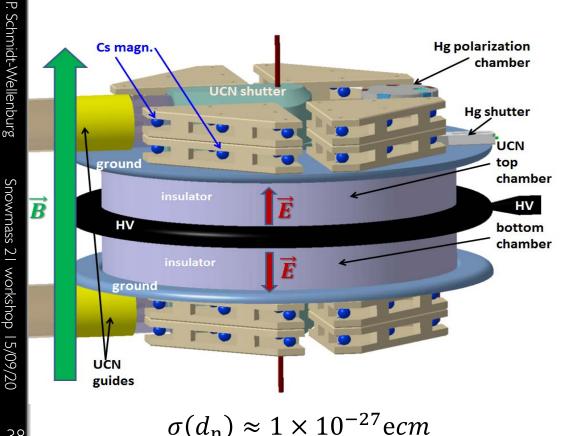
- Divide covariance matrix by matrix f'_{Hg,ij}
 (element for element)
- Add diagonal matrix with statistical error for each R value

$$R = \frac{f_{\rm n} + \gamma_n / 2\pi \langle z \rangle g_z}{f_{\rm Hg}}$$

$$f_{\mathrm{Hg},ij} = f_{\mathrm{Hg},i} \cdot f_{\mathrm{Hg},j}$$

$$\sigma_R^2 = \frac{\sigma_{f_{\rm Hg}}^2}{f_{\rm Hg}^2} + \left(\frac{\gamma_n/2\pi\langle z\rangle\,\delta g_z}{f_{\rm Hg}}\right)^2 + \left(\frac{\sigma_{\rm Hg}\cdot(f_{\rm h}\mp\gamma_n/2\pi\langle z\rangle\,\delta g_z)}{f_{\rm Hg}^2}\right)^2$$

Main features of the new instrument

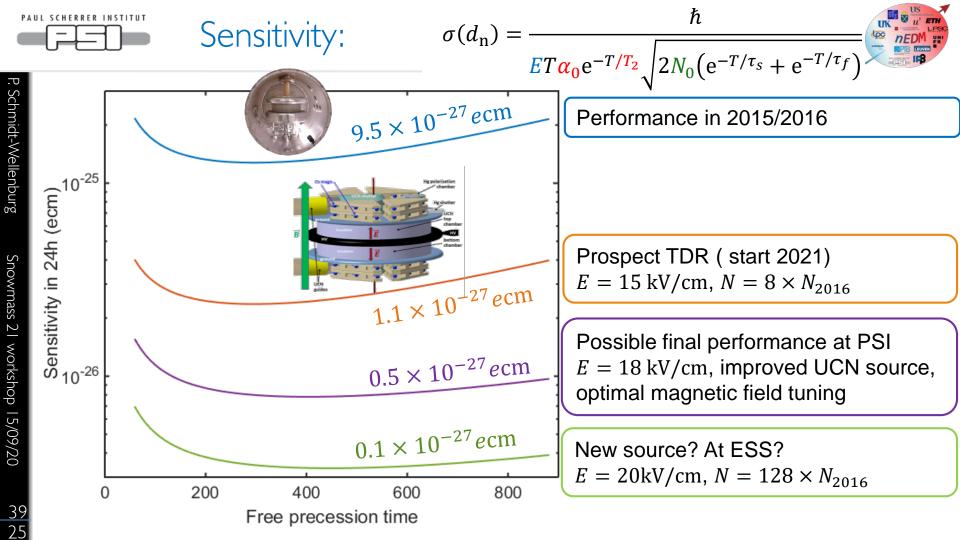


Inspired by Gatchina double-chamber setup I.Altarev et al. JETP Lett.44(1986)460 and based on years of experience with our own operating experiment:

- 2 neutron precession chambers
- Hg co-magnetometer in both chambers with laser read out
- Baseline scenario: UCN chamber with materials and coatings as present chamber, but larger diameter of storage volume - upgrades in development

- Surrounded by calibrated Cs arrays on ground potential (~ 100 sensors)

- large NiMo (⁵⁸NiMo) coated UCN guides



PAUL SCHERRER INSTITUT

Analysis: Frequency ratio $R = f_n/f_{Hg}$

 $\begin{array}{c}
 199 \text{Hg} + \text{UCN} & \langle z \rangle_t \\
 199 \text{Hg} + \text{UCN} & \langle z \rangle_b
\end{array}$

double chamber - linear $\partial B/\partial z$ is almost perfectly compensated but due to different h_t and h_b gradient fluctuations still cause an error on a lower level though

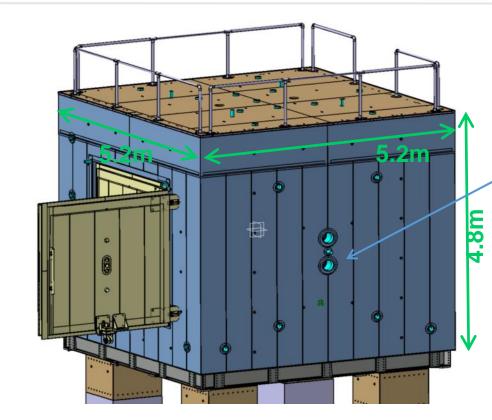
$$R^{\mathrm{T}} - R^{\mathrm{B}} = \frac{\gamma_{\mathrm{n}}}{\gamma_{\mathrm{Hg}}} \left(2\delta_{\mathrm{EDM}} + (\langle z \rangle_{\mathrm{T}} - \langle z \rangle_{\mathrm{B}}) \frac{g}{B_{0}} + \cdots \right)$$

Analysis: based on $(R^{T} - R^{B})$ as function of dB/dz extrapolate to 0

PAUL SCHERRER INSTITU

Magnetically Shielded Room

? Schmidt-Wellenburg

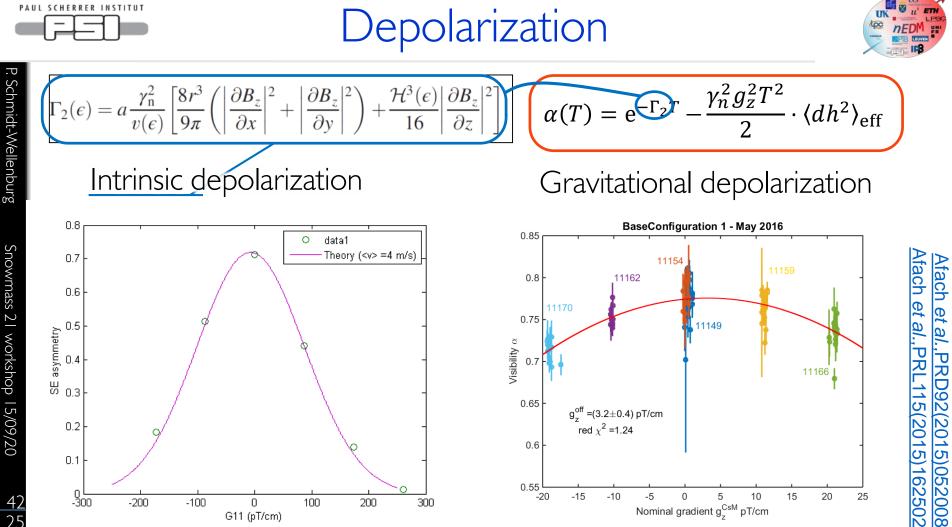


setup features:

- (2 + 4) layers mu-metal
- Al eddy current shield
- 78 openings for experiment use
- largest openings
 ID=220mm
- for 2 UCN guides
- for 2 main pumping ports

expected performance: - quasi-static shielding factor guaranteed >70'000 (expected >100'000) - central B-field < 0.5nT

- central gradient < 0.3 nT/m



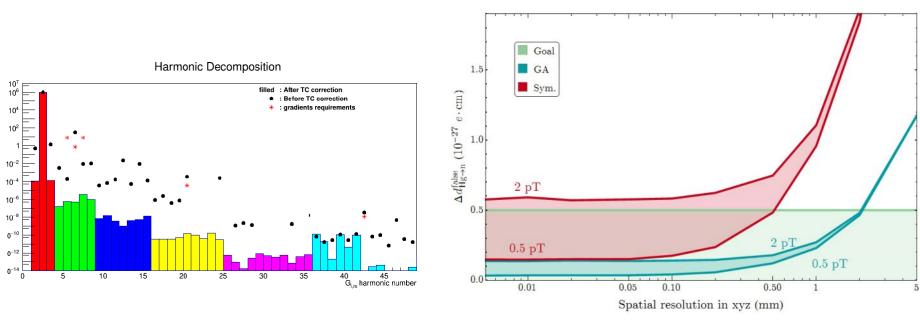
Excellent B-field uniformity

Magnetic-field generation

- Optimized main magnetic field coil
- 64 correction coils

Magnetic-field measurement

- Order 100 CsM sensors
- Optimal placement



PAUL SCHERRER INSTITUT

Today's status of n2EDM

Status of setup:

- MSR installed and commissioning has started
- Installation of coil system, vacuum tank and precession chambers next
- Area and environmental setup ongoing

- P. Schmidt-Wellenbu
- Use variometer method field information
- Use known sensitivity of each CsM to changes of any of 30 trim coils
- Use field information from offline field maps for $\langle B_{\rm T}^2 \rangle$

Initial polarization $\alpha_0 = 0.86$ Best polarization after 180 s free precession $\alpha_{180} = 0.81$ Average: $\overline{\alpha_{180}} = 0.75$ $T_{2} = -180s / \ln\left(\frac{a_{180}}{\alpha_{0}}\right) = 3000s$ $\overline{T_{2}} = -180s / \ln\left(\frac{\overline{a_{180}}}{\alpha_{0}}\right) = 1315s$

hop

.P

The history of the Sussex tin can

PAUL SCHERRER INSTITU

The history of the Sussex tin can

