Storage Rings for the Search of Charged Particles Electric Dipole Moments

C. Carli, P. Fierlinger, <u>P. Lenisa</u>, J. Pretz, F. Rathmann, E. Stephenson and H. Ströher

CERN (Switzerland), TUM München (Germany), Univ. of Ferrara and INFN (Italy), FZ-Jlich (Germany), RWTH Aachen (Germany), Indiana Univ. (USA)

Snowmass 2021, September 16th, 2020

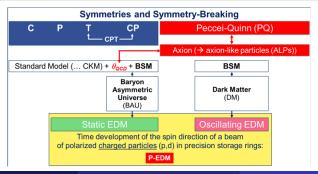
Motivation

2/29

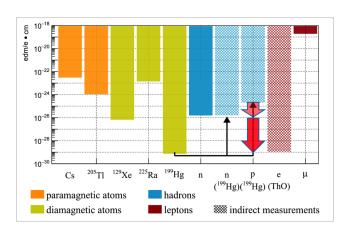
Addressing the most intriguing puzzles of contemporary physics

Problems

- Preponderance of matter over antimatter
- Nature of Dark Matter

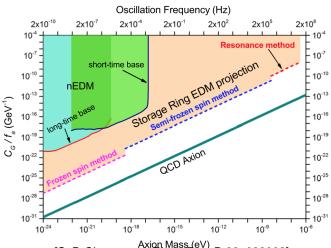

Addressing the most intriguing puzzles of contemporary physics

Problems


- Preponderance of matter over antimatter
- Nature of Dark Matter

Approach

- Measurements of static Electric Dipole Moments (EDM) of fundamental particles.
- Searches for axions and axion-like particles (ALPs) as Dark Matter candidates through oscillating EDM



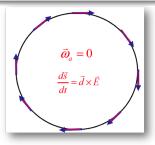
EDM: Current upper limits

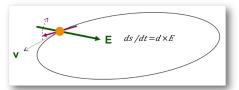
- Presented LoI: EDMs of charged hadrons: p, d, ³He
- Goal is to bring the limit for p to 10^{-29} e · cm

Axion mass vs gluon coupling

[S. P. Chang et al. Phys. Rev. D 99, 083002]

- Experimental limits for the axion-gluon coupled oscillating EDM measurement.
- The nEDM results are included for comparison.

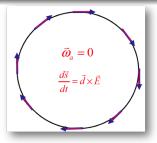

Experimental method

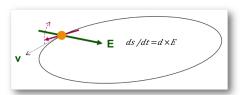

6/29

Search for static EDM in storage rings: concept

Pure E ring

- Inject particles in storage ring
- ② Align spin along momentum (→ freeze horiz. spin-precession)
- 3 Search for time development of vertical polarization

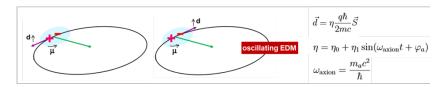

7/29


Snowmass

Search for static EDM in storage rings: concept

Pure E ring

- Inject particles in storage ring
- ② Align spin along momentum (→ freeze horiz. spin-precession)
- Search for time development of vertical polarization



Frozen-spin condition:

- Pure E ring for p
- Combined E/B ring for d and ³He

Search for oscillating EDM in storage rings: concept

Combined E/B ring

- The particle spin precesses in the horizontal plane due to a magnetic field and its effect on the MDM
- An oscillating EDM (oEDM) at the right frequency, creates a resonant situation in which not only the torque changes sign, but also the EDM vector changes direction, and as a result, one obtains a constructive out-of-plane rotation
- Changing the beam momentum in the storage ring, the precession frequency, the oEDM frequency and thus the Compton frequency, proportional to the axion/ALP mass, can be probed

Requirements

High precision, primarily electric storage ring

- Crucial role of alignment, stability, field homogeneity and shielding from unwanted magnetic fields.
- High beam intensity: N=4 · 10¹⁰ per fill
- Polarized hadron beams: P=0.8
- Long spin coherence time: $\tau = 1000 \text{ s}$
- Large electric fields: E = 10 MV/m
- Efficient polarimetry with:
 - large analyzing power: A = 0.6
 - high efficiency detection: eff. = 0.005

Requirements

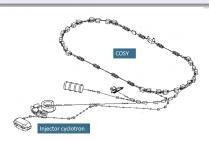
High precision, primarily electric storage ring

- Crucial role of alignment, stability, field homogeneity and shielding from unwanted magnetic fields.
- High beam intensity: N=4 · 10¹⁰ per fill
- Polarized hadron beams: P=0.8
- Long spin coherence time: $\tau = 1000 \text{ s}$
- Large electric fields: E = 10 MV/m
- Efficient polarimetry with:
 - large analyzing power: A = 0.6
 - high efficiency detection: eff. = 0.005

Expected statistical sensitivity in 1 year of data taking:

- $\sigma_{stat} = \frac{\hbar}{\sqrt{Nf_{\tau}PAF}} \Rightarrow \sigma_{stat} = 10^{-29} e \cdot cm$
- Experimentalist's goal: provide σ_{syst} to the same level.

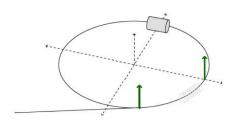
9/29


Achievements at COSY

The COSY storage ring at FZ-Jülich (Germany)

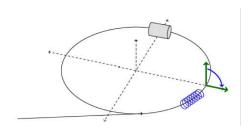
COoler SYnchrotron COSY

- Cooler and storage ring for (pol.) protons and deuterons.
- Momenta p= 0.3-3.7 GeV/c
- Phase-space cooled internal and extracted beams

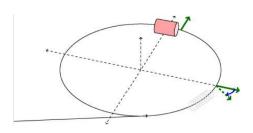


Formerly used as spin-physics machine for hadron physics:

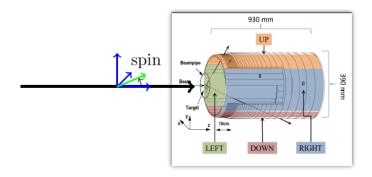
- Ideal starting point for srEDM related R&D
- First direct measurement of deuteron EDM with RF-Wien filter


Experiment preparation

① Inject and accelerate vertically pol. deut. to p \approx 1 GeV/c


Experiment preparation

- $lue{lue{0}}$ Inject and accelerate vertically pol. deut. to p pprox 1 GeV/c
- 2 Flip spin with solenoid into horizontal plane



Experiment preparation

- $lue{1}$ Inject and accelerate vertically pol. deut. to p pprox 1 GeV/c
- Plip spin with solenoid into horizontal plane
- Extract beam slowly (100 s) on target
- Measure asymmetry and determine spin precession

- Elastic deuteron-carbon scattering
- Up/Down asymmetry \propto horizontal polarization $\rightarrow \nu_s = \gamma G$
- ullet Left/Right asymmetry \propto vertical polarization \to d

13/29

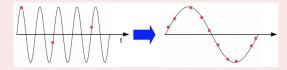
Time-stamp system

Asymmetry:
$$\epsilon = \frac{N_{up} - N_{down}}{N_{up} + N_{down}} = p_z A_y \sin(2\pi \cdot \nu_s \cdot n_{turns})$$

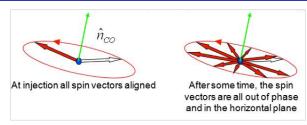
Challenge

- Spin precession frequency: 126 kHz
- $\nu_s = 0.16 \rightarrow 6 \text{ turns/precession}$
- event rate: 5000 $s^{-1} \rightarrow 1$ hit / 25 precessions \rightarrow no direct fit of rates

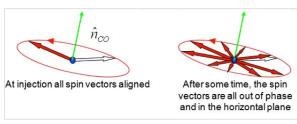
Time-stamp system

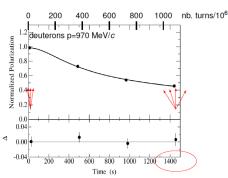

Asymmetry:
$$\epsilon = \frac{N_{up} - N_{down}}{N_{up} + N_{down}} = p_z A_y \sin(2\pi \cdot \nu_s \cdot n_{turns})$$

Challenge


- Spin precession frequency: 126 kHz
- $\nu_s = 0.16 \rightarrow 6 \text{ turns/precession}$
- event rate: 5000 $s^{-1} \rightarrow 1$ hit / 25 precessions \rightarrow no direct fit of rates

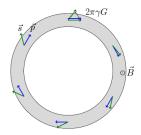
Solution: map many event to one cycle


- Counting turn number n \rightarrow phase advance $\phi_s = 2\pi \nu_s n$
- For intervals of $\Delta n = 10^6$ turns: $\phi_s \to \phi_s \mod 2\pi$



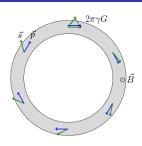
Optimization of spin-coherence time

Optimization of spin-coherence time

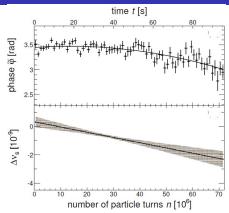


I major achievement [Phys. Rev. Lett. 117 (2016) 054801]

- $\tau_{SCT} = (782 \pm 117)$ s
- Previously: $\tau_{SCT}(VEPP) \approx 0.5 \text{ s}$ ($\approx 10^7 \text{ spin revolutions})$
- Large value of SCT of crucial importance, since $\sigma_{STAT} \propto \frac{1}{\tau_{SCT}}$


Precise determination of the spin-tune

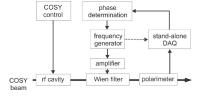
Spin-tune ν_s

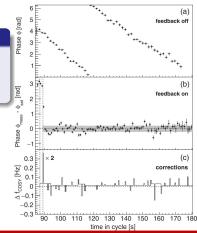

$$u_{
m s} = \gamma {
m extbf{G}} = rac{{
m nb.spin-rotations}}{{
m nb.particle-revolutions}}$$

Precise determination of the spin-tune

Spin-tune ν_s

$$u_{
m s} = \gamma {
m \it G} = rac{{
m \it nb.spin-rotations}}{{
m \it nb.particle-revolutions}}$$

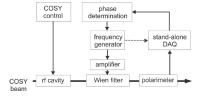

Il major achievement [Phys. Rev. Lett. 115, 094801]

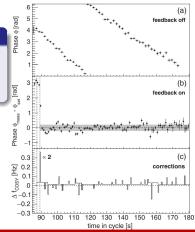

- Interpolated spin tune in 100 s:
- $|\nu_s| = (16097540628.3 \pm 9.7) \times 10^{-11} (\Delta \nu_s / \nu_s \approx 10^{-10})$
- Angle precision: $2\pi \times 10^{-10} = 0.6$ nrad
- Previous best: 3 × 10⁻⁸ per year (g-2 experiment)
- lacktriangledown new tool to study systematic effects in storage rings

Phase locking spin precession in machine to device RF

Spin-feedback system maintains:

- resonance frequency
- phase between spin-precession and device RF


III major achievement [Phys. Rev. Lett. 119, 014801]:


Error of phase-lock σ_{ϕ} = 0.21 rad

Phase locking spin precession in machine to device RF

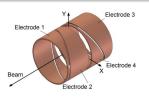
Spin-feedback system maintains:

- resonance frequency
- phase between spin-precession and device RF

III major achievement [Phys. Rev. Lett. 119, 014801]:

Error of phase-lock σ_{ϕ} = 0.21 rad

At COSY freezing of spin precession not possible


→ phase-locking required to achieve precision for EDM

Other technological developments

Beam position monitors for srEDM experiments

Development of compact BPM based on Rogowski coil

• Main adv.: short install. length (\approx 6 cm in beam direction)

Conventional BPM

- Easy to manifacture
- Length = 20 cm
- Resolution \approx 5 μ m

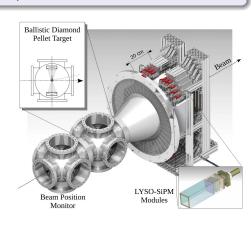
Rogowski BPM (warm)

Excellent RF-signal response

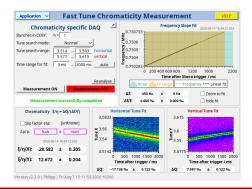
Snowmass

19/29

- Length = 1 cm
- Resolution $< 1 \mu m$


High-precision beam polarimeter with internal C target

Based on LYSO scintillator readout by SiPM


- Compared to Nal:
 - high density (7.1 vs 3.67 g/cm³),
 - fast decay time (45 vs 250 ns).

Perspectives:

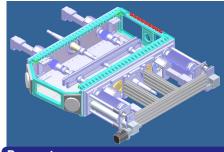
- Capable of operating with CW and CCW beams
- System installed in Spring 2020.
- Under study: Ballistic diamond pellet target for homogeneous beam sampling.
- Possibility of determining polarization profile of the beam

New tool for fast tune and chromaticity measurement

Fast tune measurement within a few milliseconds

- Fast tune meas. based on bunch-by-bunch beam position meas.:

 Betatron oscillations excited through stripline electrodes


 A resonant transverse oscillations observed through beam position pick-ups.
 - \rightarrow resonant transverse oscillations observed through beam position pick-ups.
- Determination of the chromaticity:
 Particle momentum changed by small frequency change
 → observed tune change provides a measure for the chromaticity.

E/B deflector development using real-scale setup

Equipment

- Dipole magnet B_{max} = 1.6 T
- Mass = 64 t
- Gap height = 200 mm
- Protection foil between chamber wall and detector
- First results expected soon

Parameters

- Electr. length = 1020 mm
- Electr. height = 90 mm
- Electr. spacing = 20 to 80 mm
- Max potential = ± 200 kV
- Material: Al coated with TiN

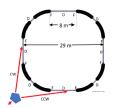
Towards a storage ring EDM measurement

Staged approach

On the basis of the preparedness of the required technological developm. $(\rightarrow \text{spare})$

Stage 1

precursor experiment at COSY (FZ Jülich)

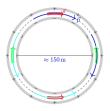


magnetic storage ring

now

Stage 2

prototype ring



- electrostatic storage ring
- simultaneous 🖰 and 🖰 beams

5 years

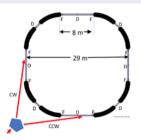
Stage 3

dedicated storage ring

- magic momentum
- (701 MeV/c)
- 10 years

 $\frac{\sigma_{EDM}/(e \cdot \text{cm})}{10^{-17} \cdot 10^{-18} \cdot 10^{-19} \cdot 10^{-20} \cdot 10^{-21} \cdot 10^{-22} \cdot 10^{-23} \cdot 10^{-24} \cdot 10^{-25} \cdot 10^{-26} \cdot 10^{-27} \cdot 10^{-28} \cdot 10^{-29}}$

Stage 2: prototype EDM storage ring

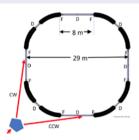

- Build demonstrator for charged particle EDM
- Project prepared by CPEDM working group (CERN+JEDI)
 - Physics Beyond Collider process (CERN)
 - European Strategy for Particle Physics Update
- Possible host sites: COSY or CERN
- S.R. to Search for EDMs of Charg. Part. Feas. Study (arXiv:1912.07881)

Stage 2: prototype EDM storage ring

- Build demonstrator for charged particle EDM
- Project prepared by CPEDM working group (CERN+JEDI)
 - Physics Beyond Collider process (CERN)
 - European Strategy for Particle Physics Update
- Possible host sites: COSY or CERN
- S.R. to Search for EDMs of Charg. Part. Feas. Study (arXiv:1912.07881)

100 m circumference

- p at 30 MeV all-electric CW-CCW beams operation
- p at 45 MeV frozen spin including additional vertical magnetic fields

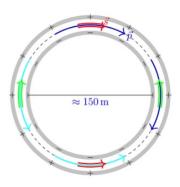


Stage 2: prototype EDM storage ring

- Build demonstrator for charged particle EDM
- Project prepared by CPEDM working group (CERN+JEDI)
 - Physics Beyond Collider process (CERN)
 - European Strategy for Particle Physics Update
- Possible host sites: COSY or CERN
- S.R. to Search for EDMs of Charg. Part. Feas. Study (arXiv:1912.07881)

100 m circumference

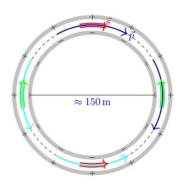
- p at 30 MeV all-electric CW-CCW beams operation
- p at 45 MeV frozen spin including additional vertical magnetic fields


Challenges

- All electric & E-B combined deflection
- Storage time
- CW-CCW operation
- Spin-coherence time
- Polarimetry
- Magnetic moment effects
- Stochastic cooling

Stage 3: precision EDM ring

500 m circumference (with E=8MeV/m)


- All-electric deflection
- Magic momentum for protons (p = 701 MeV/c)

Stage 3: precision EDM ring

500 m circumference (with E=8MeV/m)

- All-electric deflection
- Magic momentum for protons (p = 701 MeV/c)

Challenges

- All-electric deflection
- Simultaneous CW/CCW beams
- Phase-space cooled beams
- Long spin coherence time (> 1000 s)
- Non-destructive precision polarimetry
- Optimum orbit control
- Optimum shielding of external fields
- Control of residual (intentional) B_r field

"Holy Grail" of storage rings (largest electrostatic ever conceived)

Conclusions

EDM searches in Storage Rings

- Outstanding scientific case with high discovery potential
- Important developments in accelerator technology

Conclusions

EDM searches in Storage Rings

- Outstanding scientific case with high discovery potential
- Important developments in accelerator technology

Fundamental achievements at COSY

- Spin-coherence time
- Spin-tune measurement
- Spin-feedback system
- Technological systems and tools for future accelerators

Conclusions

EDM searches in Storage Rings

- Outstanding scientific case with high discovery potential
- Important developments in accelerator technology

Fundamental achievements at COSY

- Spin-coherence time
- Spin-tune measurement
- Spin-feedback system
- Technological systems and tools for future accelerators

Staged approach to face challenges in accelerator technology

- Precursor measurements at COSY
- Design of a small-scale prototype ring
- Feasibility study of a pure electrostatic EDM proton ring

Spares

Status preparedness levels for the full-scale all-electric ring.

Operations	Rank	Comment	Reference
spin control feed-back	G	COSY R&D	App. A.1.3
spin coherence time	G(-)	COSY R&D	App. A.1.2
polarimetry	Y	polarimetry is destructive	Chap. 11
beam current limit	R	enough protons for EDM	Sect. 7.2
CW/CCW operation	R	systematic EDM error reduction	Ref. [1]
Theory			
GR gravity effect	G(+)	this paper, standard candle bonus	App. D
frozen spin fixed point stable?	G	stable, this paper	App. G.5.5
intrabeam scattering	Y	may limit run duration	Ref. [3]
geometric/Berry phase theory	Y	needs further study	Ref. [4]
Components			
quads	G	e.g. CSR design	Chap. 9
polarimeter	G	COSY R&D	Chap. 11
waveguide Wien filter	G	COSY R&D precursor	App. A.1.5
electric bends	R(+)	sparking/cost compromise	App. A.1.10
Physics & Engineering			
cryogenic vacuum	Y	required?—cost issue only	Ref. [5]
stochastic cooling	Y	ultraweak focusing issue	Ref. [6]
power supply stability	Y(-)	may prevent phase lock	Chap. 7
regenerative breakdown	R(+)	specific to mainly-electric,	
		not seen in E-separators	
EDM systematics			
polarimetry	G(-)	COSY R&D	Chap. 11
CW/CCW beam shape matching	Y		Chap. 10
beam sample extraction	Y	systematic error?	Chap. 11, App. K
control current resettability	Y		Ref. [7]
BPM precision	Y(-)	Rogowski? Squids?	Chap. 7, Chap. 10
element positioning & rigidity	Y(-)	must match light source stability	Ref. [8]
theoretical analysis			Chap. 10 and refs.
Radial B-field B_r	R	assumed to be dominant	Ref. [1]

Storage Ring to Search for Electric Dipole Moments of Charged Particles - Feasibility Study (arXiv:1912.07881 [hep-ex])