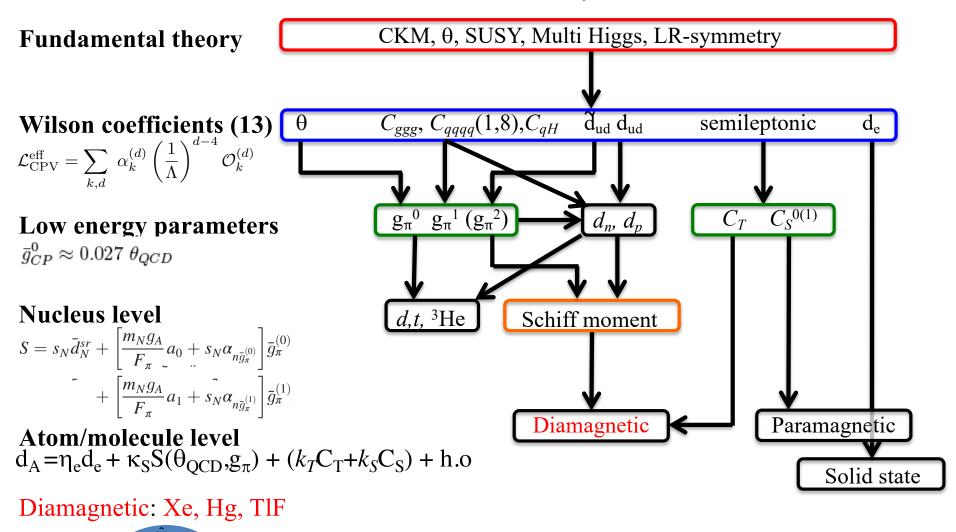
¹²⁹Xe Electric Dipole Moment Progress and prospects

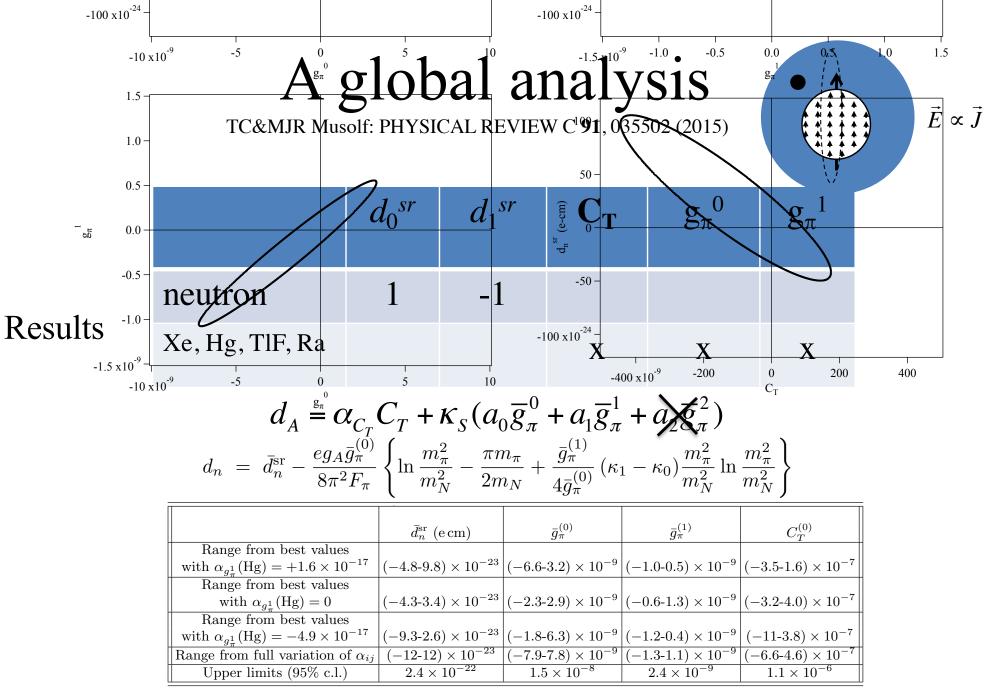
Tim Chupp University of Michigan

¹²⁹Xe Motivations
 Brief history
 HeXe EDM
 Future prospects


Office of Science

EDM results

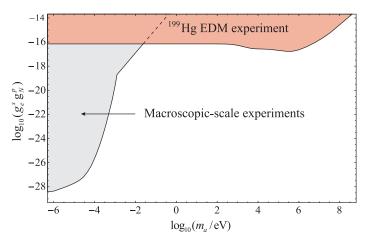
Contorn	Descrit	0507 1			
System		95% u.l.	ref.		
Paramagnetic systems					
Xe^m	$d_A = (0.7 \pm 1.4) \times 10^{-22}$	3.1×10^{-22} e-cm	a		
Cs	$d_A = (-1.8 \pm 6.9) \times 10^{-24}$	1.4×10^{-23} e-cm	b		
	$d_e = (-1.5 \pm 5.7) \times 10^{-26}$	1.2×10^{-25} e-cm			
Tl	$d_A = (-4.0 \pm 4.3) \times 10^{-25}$	1.1×10^{-24} e-cm	с		
	$d_e = (6.9 \pm 7.4) \times 10^{-28}$	1.9×10^{-27} e-cm			
YbF	$d_e = (-2.4 \pm 5.9) \times 10^{-28}$	1.2×10^{-27} e-cm	d		
ThO	$\omega^{\mathcal{N}E} = 510 \pm 485 \ \mu rad/s$		e		
	$d_e = (-4.3 \pm 4.0) \times 10^{-30}$	9.7×10^{-29} e-cm			
	$C_S = (-2.7 \pm 2.9) \times 10^{-10}$	6.4×10^{-9}			
HfF^+	$2\pi f^{BD} = 0.6 \pm 5.6 \text{ mrad/s}$	0.000	f		
	$d_e = (0.9 \pm 7.9) \times 10^{-29}$	16×10^{-29} e-cm			
Diamagnetic systems					
199 Hg	$d_A = (2.2 \pm 3.1) \times 10^{-30}$	7.4×10^{-30} e-cm	g		
¹²⁹ Xe	$d_A = (0.7 \pm 3) \times 10^{-27}$	6.6×10^{-27} e-cm	h		
²²⁵ Ra	$d_A = (4 \pm 6) \times 10^{-24}$	1.4×10^{-23} e-cm	i		
TlF	$d = (-1.7 \pm 2.9) \times 10^{-23}$	6.5×10^{-23} e-cm	j		
n	$d_n = (-0.0 \pm 1.1) \times 10^{-26}$	2.2×10^{-26} e-cm	k		
Particle systems					
μ	$d_{\mu} = (0.0 \pm 0.9) \times 10^{-19}$	1.8×10^{-19} e-cm	l		
Λ	$d_{\Lambda} = (-3.0 \pm 7.4) \times 10^{-17}$	7.9×10^{-17} e-cm	m		


EDMs arise from many sources

$$\vec{E} \propto \vec{J}$$

 $\vec{S} = \frac{1}{10} \langle r^2 \vec{r}_p \rangle - \frac{1}{6} Z \langle r^2 \rangle \langle \vec{r}_p \rangle$ Schiff moment

Rev. Mod. Phys. v. 91 015001 (2019)

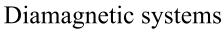


Imporoving Xe (Ra, TLF) improves fit

Axion-like contributions

New constraints on axion-mediated *P*,*T*-violating interaction from electric dipole moments of diamagnetic atoms

V. A. Dzuba,¹ V. V. Flambaum,¹ I. B. Samsonov,^{1,2} and Y. V. Stadnik³



$ d , e \cdot \mathrm{cm}$	$m_a \lesssim 10^3 { m eV}$	$m_a\gtrsim 10^8~{ m eV}$
¹²⁹ Xe	$1.5 \times 10^{-13} g_e^s g_N^p$	1.7 $g_e^s g_N^p (\frac{eV}{m_a})^2$
¹⁹⁹ Hg	$3.2 \times 10^{-14} g_e^s g_N^p$	7.3 $g_e^s g_N^p (\frac{eV}{m_a})^2$
²¹¹ Rn	$9.3 \times 10^{-14} g_e^s g_N^p$	8.5 $g_e^s g_N^p (\frac{eV}{m_a})^2$
²²⁵ Ra	$1.3 \times 10^{-13} g_e^s g_N^p$	25 $g_e^s g_N^p (\frac{\text{eV}}{m_a})^2$

Summary of ¹²⁹Xe Motivations

- Diamagnetic nuclear spin system
- Alternative to ¹⁹⁹Hg for both theory and experiment
 ¹⁹⁹Hg Theory is difficult/ambiguous
- Discovery potential: not ruled out (model INdependent)
- Can be more sensitive to axions (Stednik&Flambaum)
- Xe comagnetometer for nEDM (e.g. TUCAN)

System	$\kappa_S = \frac{d}{S} \; (\mathrm{cm}/\mathrm{fm}^3)$	$a_0 = \frac{S}{13.5\bar{g}_{\pi}^{(0)}} \ (e\text{-fm}^3)$	$a_1 = \frac{S}{13.5\bar{g}_{\pi}^{(1)}} \ (e\text{-fm}^3)$	$a_2 = \frac{S}{13.5\bar{g}_{\pi}^{(2)}} \ (e\text{-fm}^3)$	$s_N \ ({\rm fm}^2)$
¹²⁹ Xe	$0.27 \times 10^{-17} \ (0.27 - 0.38)$	-0.008(-0.005 - (-0.05))	$-0.006(-0.003 \cdot (-0.05))$	-0.009(-0.005 - (-0.1))	0.63
¹⁹⁹ Hg	$-2.8 \times 10^{-17} (-4.0 - (-2.8))$	$0.01 \ (0.005 - 0.05)$	$\pm 0.02 \ (-0.03 - 0.09)$	0.02(0.01-0.06)	1.895 ± 0.035
225 Ra	$-8.5 \times 10^{-17} (-8.5 \cdot (-6.8))$	-1.5(-6-(-1))	+6.0(4-24)	-4.0(-15-(-3))	
TlF	-7.4×10^{-14}	-0.0124	0.1612	-0.0248	0.62

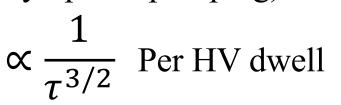
Brief history

- 1963: Schiff's theorem/violations Motivated by Fairbank's ³He idea
- 1980/4: Ramsey's ³He comagnetometer proposal (nEDM)
- 1984: Forstons/Vold: single species ¹²⁹Xe
- 1990: Oteiza first He-Xe comagnetometer
- 2001: Rosenberry dual He-Xe maser $d_{Xe} < x10^{-27}$ e-cm
- 2014: HeXe @TUM PTB*

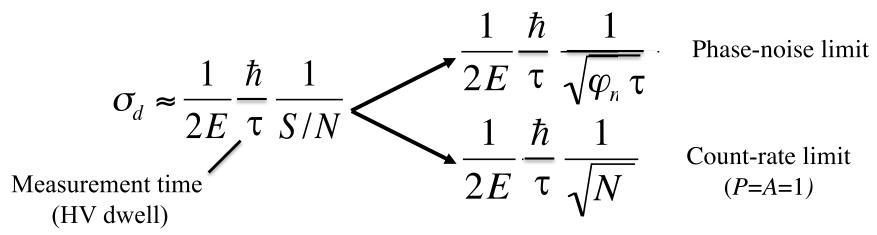
Other efforts

- Romalis LXe
- Active maser: Tokyo
- TRIUMF Xe (comagnetometer)
- Xe-129/He-3 MIXed (Mainz/Heidelberg/Juelich)

Brief history

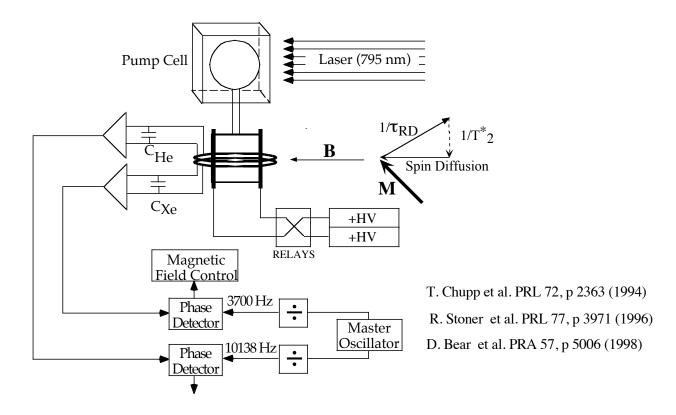

- 1963: Schiff's theorem/violations Motivated by Fairbank's ³He idea
- 1980/4: Ramsey's ³He comagnetometer proposal (nEDM)
- 1984: Fortson/Vold: single species ¹²⁹Xe
- 1990: Oteiza first He-Xe comagnetometer
- 2001: Rosenberry dual He-Xe maser
- 2014: HeXe @TUM PTB*

Other efforts

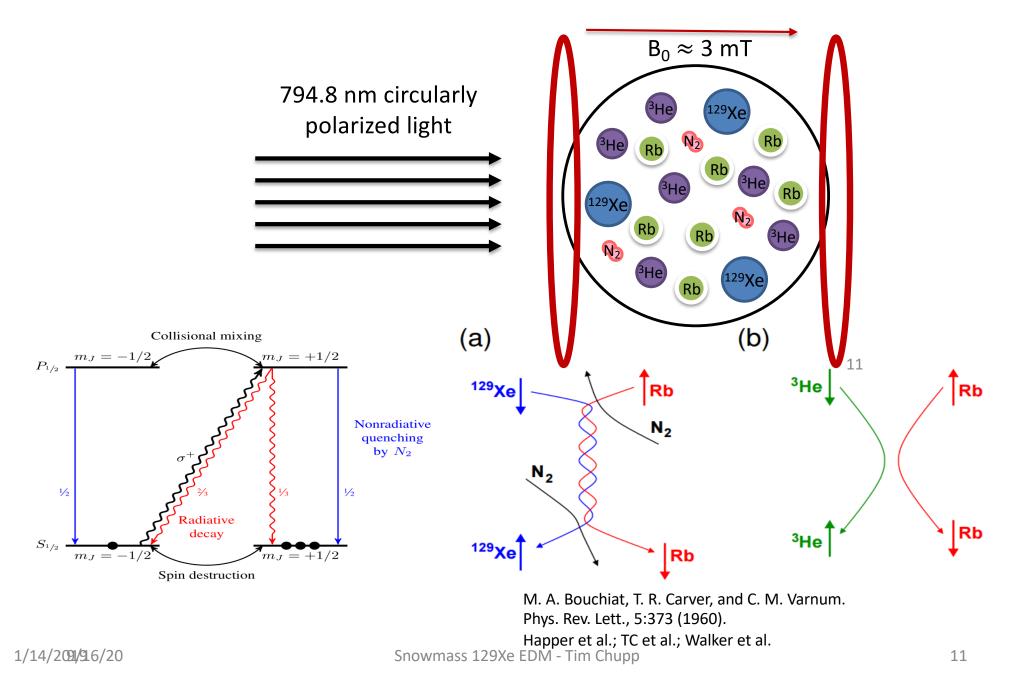

- Romalis LXe
- Active maser: Tokyo
- TRIUMF Xe (comagnetometer)
- Xe-129/He-3 MIXed (Mainz/Heidelberg/Juelich)

EDM Measurements $H = \boxed{-\vec{\mu} \cdot \vec{B}} - \vec{d} \cdot \vec{E}$

- Strong electric filed
- Large signal needs POLARIZATION (usually optical pumping)
 1
- MEASURE FREQUENCIES


• AND MAGNETIC FIELDS - Comagnetometry

Atomic Electric Dipole Moment Measurement Using Spin Exchange Pumped Masers of ¹²⁹Xe and ³He


M. A. Rosenberry* and T. E. Chupp University of Michigan, Ann Arbor, Michigan 48109 (Received 1 August 2000)

- Two species comagnetometry
 - Continuous spin precession
- HV dwell time limited by drifts

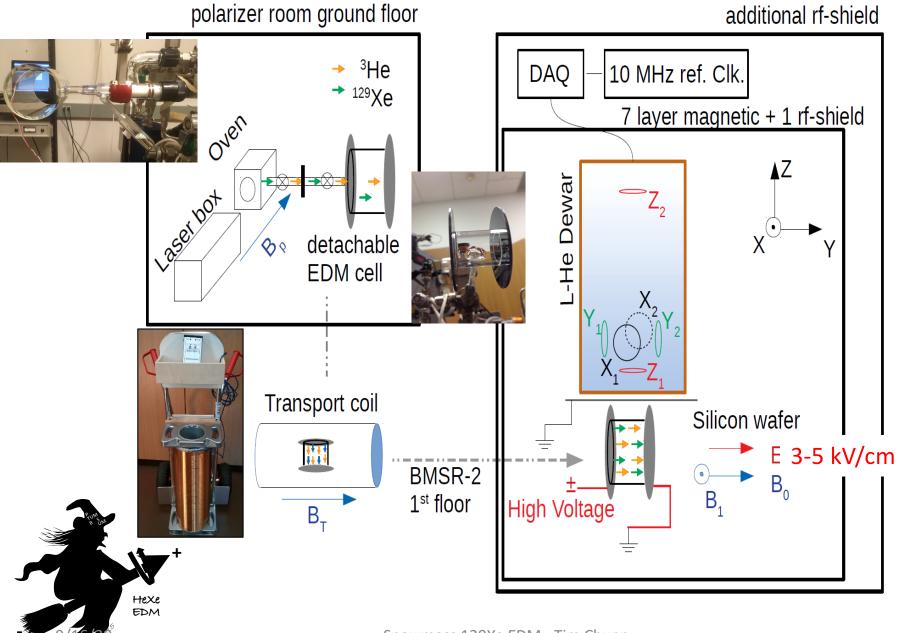
 $d_{Xe} = (0.7 \pm 3.3) \times 10^{-27} \text{ e-cm} (< 6.6 \times 10^{-27} \text{ e-cm} 95\%)$

Spin-exchange optical pumping (SEOP)

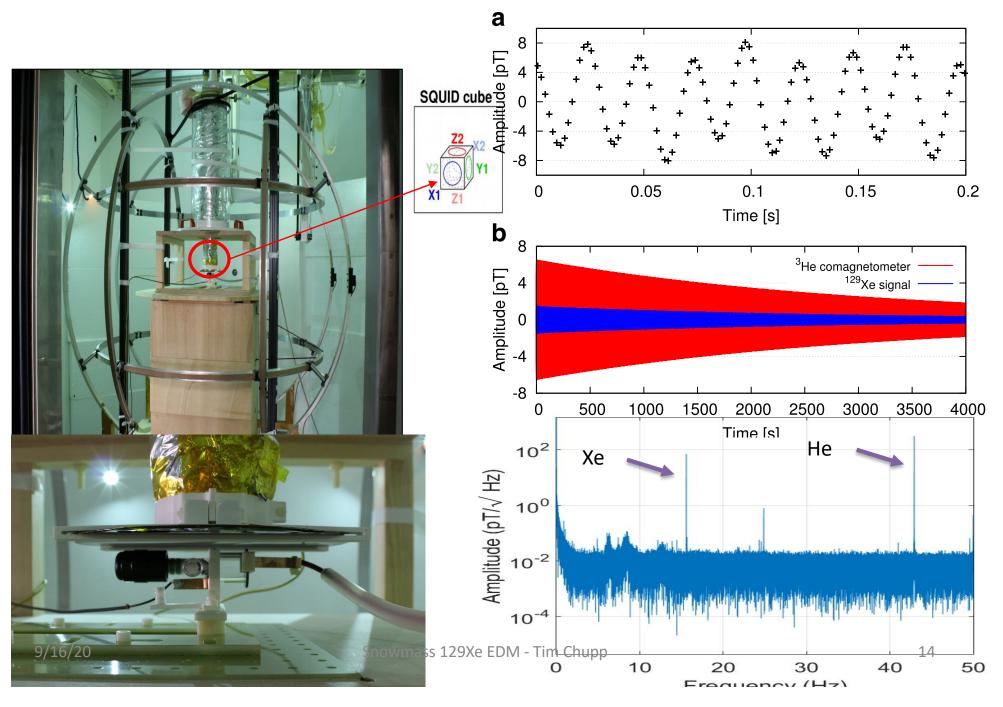
¹²⁹Xe EDM with ³He Comagnetometry HeXe

N. Sachdeva,^{1,*} I. Fan,² E. Babcock,³ M. Burghoff,² T. E. Chupp,¹ S. Degenkolb,^{1,4} P. Fierlinger,⁵ E. Kraegeloh,^{5,1} W. Kilian,² S. Knappe-Grüneberg,² F. Kuchler,^{5,6} T. Liu,² M. Marino,⁵ J. Meinel,⁵ Z. Salhi,³ A. Schnabel,² J. T. Singh,⁷ S. Stuiber,⁵ W. A. Terrano,⁵ L. Trahms,² and J. Voigt²

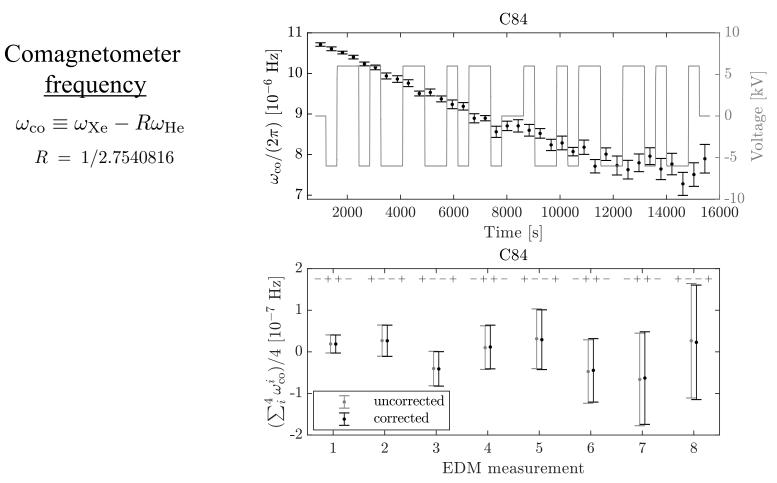
 ¹Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
 ²Physikalisch-Technische Bundesanstalt (PTB) Berlin, 10587 Berlin, Germany
 ³Jülich Center for Neutron Science, 85748 Garching, Germany
 ⁴Institut Laue-Langevin, 38042 Grenoble, France
 ⁵Excellence Cluster Universe and Technische Universität München, 85748 Garching, Germany
 ⁶TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
 ⁷National Superconducting Cyclotron Laboratory and Department of Physics & Astronomy, Michigan State University, East Lansing, Michigan 48824, USA



PHYSICAL REVIEW LETTERS 123, 143003 (2019)



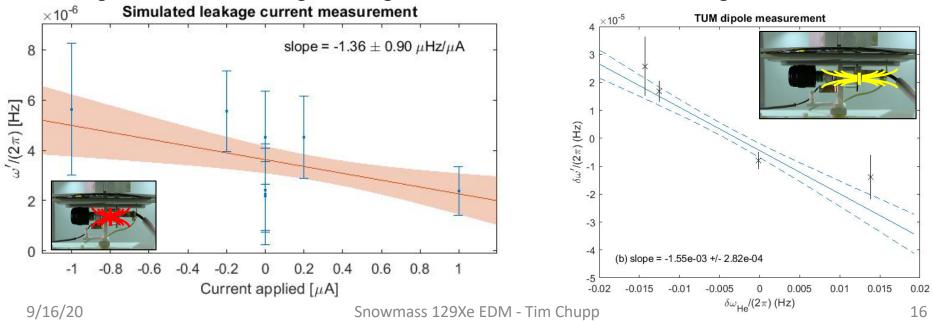
HeXe Overview

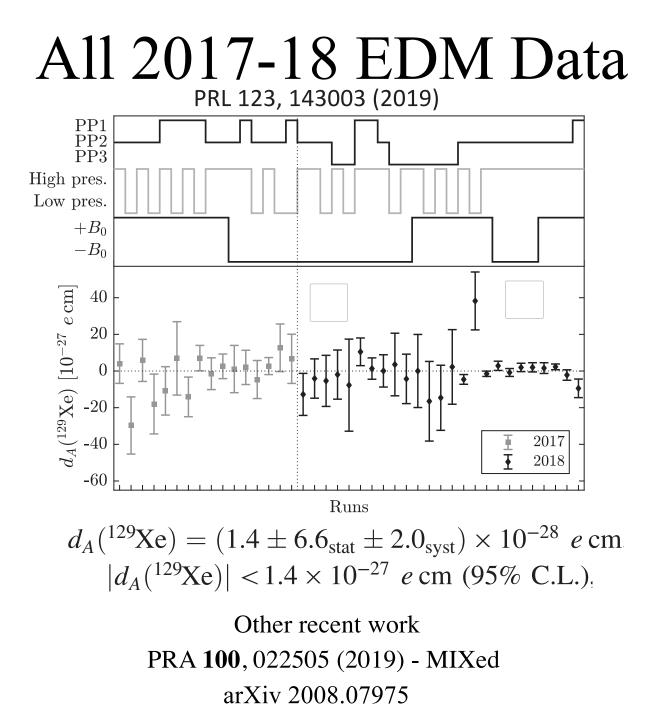


Author's personal copy

SQUID Detection

EDM Extraction


- 1. BLINDED analysis
- 2. Segment comagnetometer frequencies combined in groups of 4 are an EDM measurement
- 3. HV patterns ABBA BAAB ... cancel offsets (2), linear drifts (4), quadratic drifts (8) etc.
- 4. Total of 16/27 runs in 2017/2018


Systematic effects

studied with auxiliary measurements

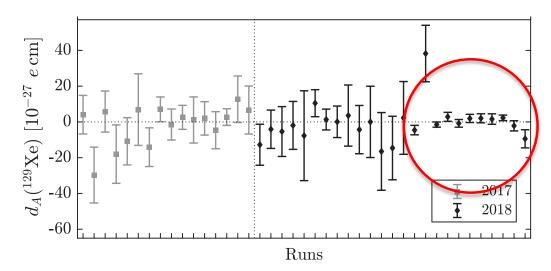
		Leakage		Cell	Cell translation		
		current	Charging current	rotation	Linear Gradient	External Dipole (Loop Test)	
Auxiliary measurement		Single turn ± 0.1 –1 μ A	±10–20 $\mu {\rm A}$	$\pm 5^{\circ}$	N/A	Loop attached to electrode 0–100 $\mu {\rm A}$	
Measured linear dependence		$\frac{1}{2\pi} \frac{\partial \omega_{\rm co}}{\partial I}$	$\frac{1}{2\pi} \frac{\partial \omega_{\rm co}}{\partial I}$	$\frac{1}{2\pi} \frac{\partial \omega_{\rm co}}{\partial \theta}$	$\frac{1}{2\pi} \frac{\partial \omega_{\rm co}}{\partial z}$	$rac{1}{2\pi}rac{\partial\omega_{ m co}}{\partial\omega_{ m He}}$	
	2017	$= \begin{array}{c} (1.32 \pm 0.93) \\ \text{Hz/A} \end{array}$	$= (-0.3 \pm 1.2)$	≤ 1.6	$\leq 90~\mathrm{nHz/m}$	$= (-1.55 \pm 0.28) \times 10^{-3}$	
	2018	$= (-8.6 \pm 7.6)$ mHz/A	m mHz/A	$\mu Hz/rad$	$\leq 100~\rm{nHz/m}$		
Observed HV-correlated maximum	2017	$I_{\rm leak} = 97~{\rm pA}$	$I_{\rm charge} = 19~{\rm nA}$	$\delta \theta \leq 33 \ \mu rad$	$\delta z < 200 \ \mu m$	$\frac{\delta \omega_{\rm He}^{HV}}{2\pi} = (-181.4 \pm 124.4) \text{ nHz}$	
	2018	$I_{\text{leak}} = 73 \text{ pA}$	$I_{\rm charge} = 19~{\rm nA}$			$\frac{\delta \omega_{\text{He}}^{HV}}{2\pi} = (-82.5 \pm 226.8) \text{ nHz}$	
False EDM $(e \operatorname{cm})$	2017	1.2×10^{-28}	1.7×10^{-29}	4.2×10^{-29}	1.3×10^{-29}	2.6×10^{-28}	
	2018	4.5×10^{-31}	1.2×10^{-29}	4.0×10^{-29}	1.0×10^{-29}	1.9×10^{-28}	

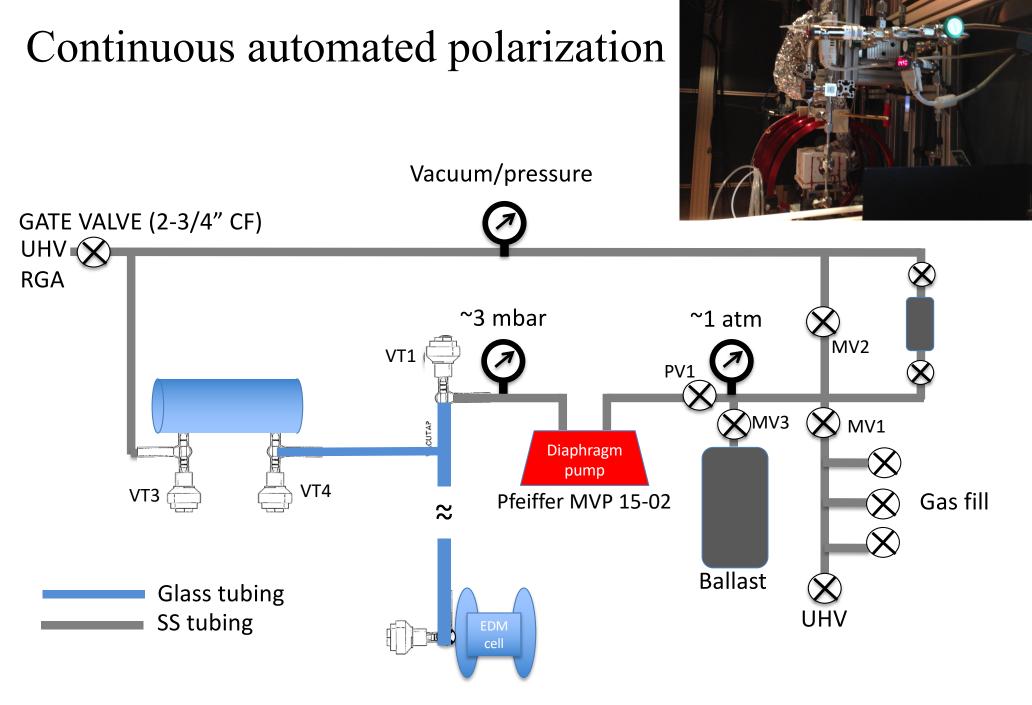
Note loop test covers Leakage, Charge, and MOTION wrt external dipole.

Future and Prospects

$$\sigma_d \approx \frac{1}{2E} \frac{\hbar}{\tau} \frac{1}{S/N} \propto \frac{1}{\tau^{3/2}}$$
 Per HV dwell

Improve S/N


Polarization improvements/Quiet SQUIDs Longer τ (time between *E* reversals)


Control drifts (cell shape, $\pi/2$ pulse)

Higher E

Gas mixtures

Run Longer/Continuously Semi-dedicated MSR (LANL nEDM MSR)

The Takeaway (Conclusions)

1. ¹²⁹Xe: hadronic (nuclear spin) system adds constraints to global fits

- 2. ³He comagnetometer
- 3. Recently improved our 2001 limit 5x
- 4. Path to an additional factors of 10 (of course)
- 5. Discovery potential (not ruled out)

