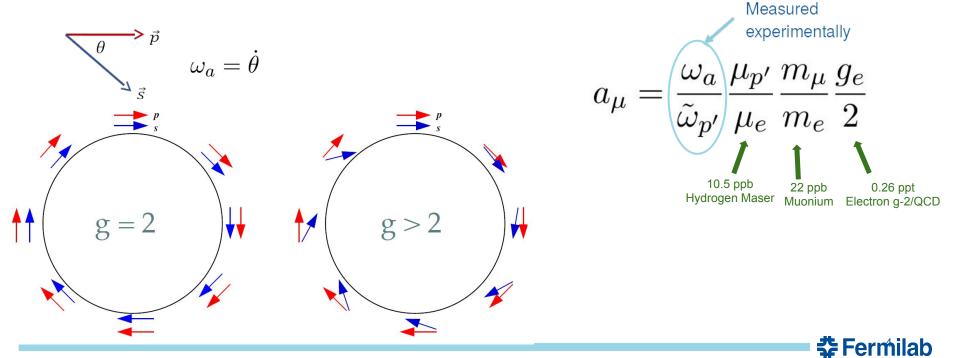


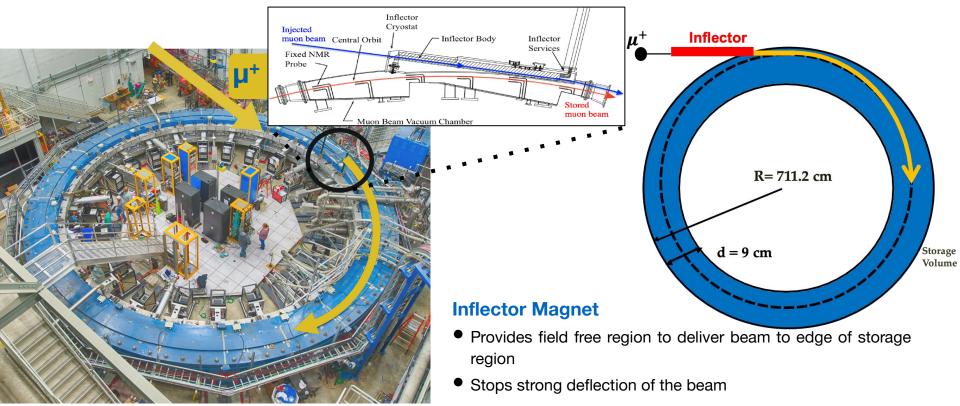
Muon g-2 Experiment at FNAL - Here to Where

Meghna Bhattacharya On Behalf of the Muon g-2 Collaboration EDM/MDM Workshop 17 September 2020

1

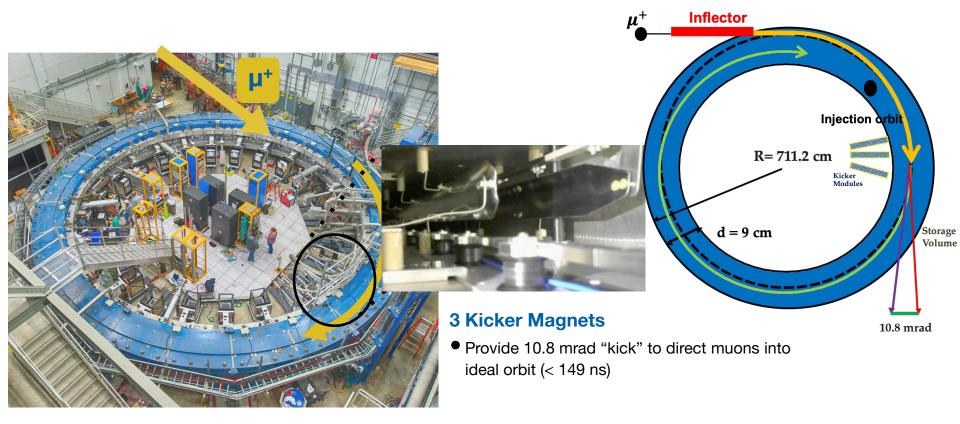


🚰 Fermilab

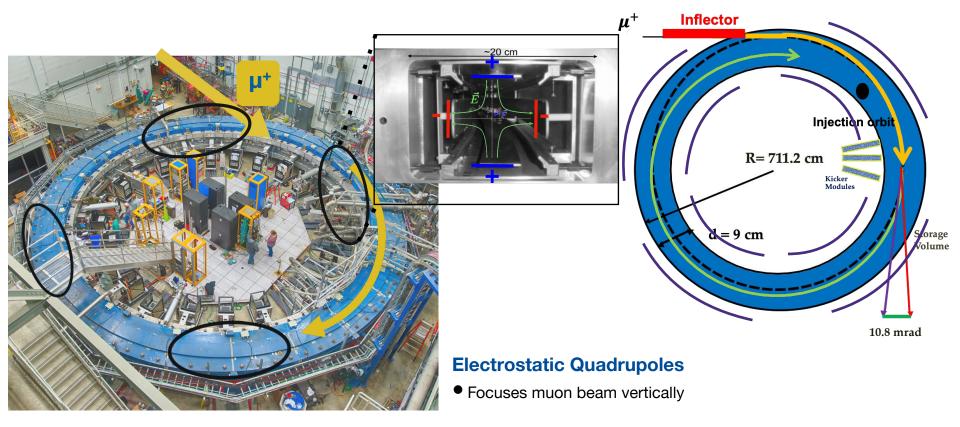

a_μ measured to 540 ppb at BNL

Measurement of a_{μ}

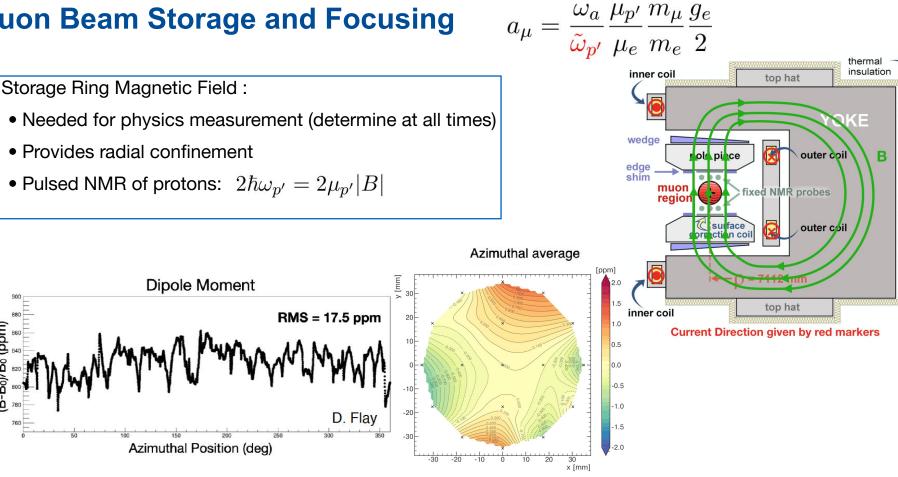
- Anomalous precession frequency: $\omega_a=\omega_s-\omega_c=a_\mu \frac{eB}{m_\mu c}$ (Ideally)
- Magnetic field: $2\hbar\omega_{p'}=2\mu_{p'}|B|$


Muon Beam Injection

• Incident beam center 77mm off from storage region center

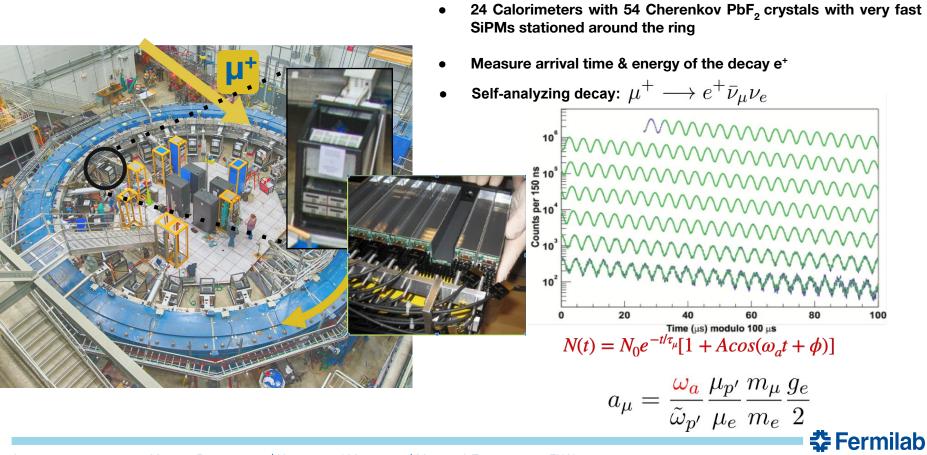


Storing the Muons

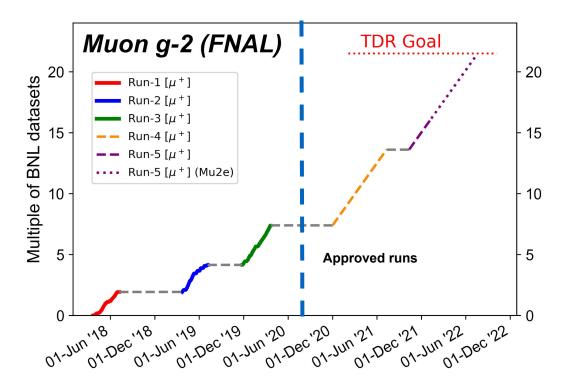


Focusing the Muon Beam

Muon Beam Storage and Focusing



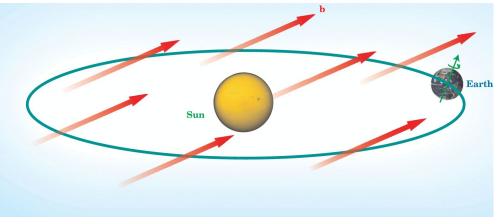
🛠 Fermilab


Meghna Bhattacharya | University of Mississippi | Muon g-2 Experiment at FNAL

(B-B₀)/B₀ (ppm)

Muon Spin Precession (ω_a) in g-2 Ring

The experiment has completed 3 data runs


- ~8X BNL statistics as of Run 3
- ~18.5X BNL goal to achieve the projected precision
- 1st publication soon!
- Short to mid time scale more μ^+ stats. and CPT LV tests
- Future options(**post Run-5**) measurement of Muon g-2 using a μ^- beam
 - additional tests of CPT and Lorentz invariance

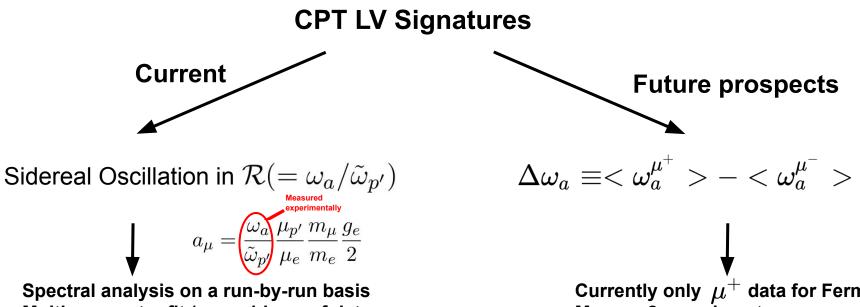
CPT and Lorentz Violation (LV)

Existence of a preferred direction, Uniform constant vector, **b Lorentz Violation**

Presence of b in vacuum changes the behavior and properties of particles and antiparticles

In a Lab on the Earth's surface, measurements change as the Earth rotates, as the orientation changes relative to b, leading to a cyclic variation in the measurement over a sidereal day.

Standard Model Extension(SME) and CPT LV for Muon :


• For the muon, SME lagrangian:

$$\mathcal{L}' = -a_{\kappa}\overline{\psi}\gamma^{\kappa}\psi - \underbrace{b_{\kappa}\overline{\psi}\gamma_{5}\gamma^{\kappa}\psi - \frac{1}{2}H_{\kappa\lambda}\overline{\psi}\sigma^{\kappa\lambda}\psi}_{+\frac{1}{2}ic_{\kappa\lambda}\overline{\psi}\gamma^{\kappa}\overset{\leftrightarrow}{D^{\lambda}}\psi + \frac{1}{2}id_{\kappa\lambda}\overline{\psi}\gamma_{5}\gamma^{\kappa}\overset{\leftrightarrow}{D^{\lambda}}\psi}$$

- All terms violate Lorentz symmetry
- a_{κ}, b_{κ} terms are CPT-odd, all others are CPT-even

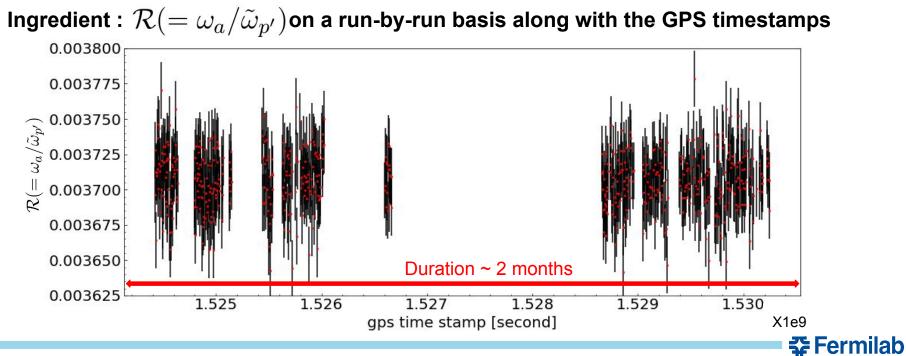
b_{κ} — Can be determined by Muon g-2 experiment

CPTLV Signals with Muon g-2 experiment at Fermilab

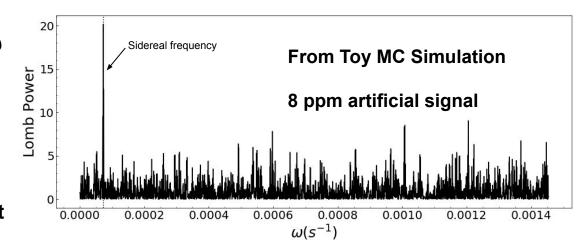
Multi-parameter fit (run ~ 1 hour of data collection)

$$b_{\perp}^{\mu^{\pm}} = rac{\hat{\omega}_a^{\mu^{\pm}}}{2|sin\chi|} < 1.4 \times 10^{-24} \text{GeV}$$
 (BNL limit)

Currently only $\,\mu^+$ data for Fermilab Muon g-2 experiment


$$\Delta\omega_a = \frac{4b_Z}{\gamma} cos\chi$$

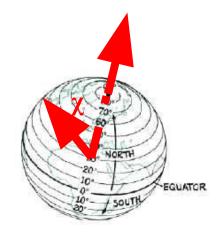
CPT LV Test : (Sidereal Search)


Simulated Data :

All plots shown here are simulated data based on the average \mathcal{R} = 0.0037072083 ($\delta \mathcal{R}$ = 20 ppm) [2001, BNL results]

Lomb-Scargle Test :

- Scan frequencies, calculate Spectral Power $P_N(\omega)$ at each ω
- $P_N(\omega)$ is a measure of the statistical significance, or likelihood, of a signal at a given frequency
- Higher $P_N(\omega) \rightarrow$ more significant periodic signal at ω



CPTLV: $\mu^+/\mu^- \omega_a$ Difference

$$\Delta \omega_a \equiv <\omega_a^{\mu^+} > - <\omega_a^{\mu^-} > = \frac{4b_Z}{\gamma} cos\chi$$

- the magnetic field can vary, when comparing frequencies, instead of ω_a , use ${\cal R}(=\omega_a/\omega_p)$
- BNL E821 Results (2008) :

$$\Delta \mathcal{R} = -(3.6 \pm 3.7) \times 10^{-9}$$

 $b_Z = -(1.0 \pm 1.1) \times 10^{-23} \text{ GeV}$

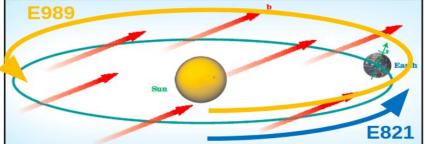
CPTLV: $\mu^+/\mu^- \omega_a$ Difference

$$\mathcal{L}' = -a_{\kappa}\overline{\psi}\gamma^{\kappa}\psi - b_{\kappa}\overline{\psi}\gamma_{5}\gamma^{\kappa}\psi - \frac{1}{2}H_{\kappa\lambda}\overline{\psi}\sigma^{\kappa\lambda}\psi + \frac{1}{2}ic_{\kappa\lambda}\overline{\psi}\gamma^{\kappa}\overset{\leftrightarrow}{D^{\lambda}}\psi + \frac{1}{2}id_{\kappa\lambda}\overline{\psi}\gamma_{5}\gamma^{\kappa}\overset{\leftrightarrow}{D^{\lambda}}\psi$$

- For two experiments at different colatitude:
 - BNL & CERN, FNAL & BNL , **JPARC & FNAL**

$$\Delta \mathcal{R} = \frac{2b_Z}{\gamma} \left(\frac{\cos \chi_1}{\omega_{p1}} + \frac{\cos \chi_2}{\omega_{p2}} \right) + 2(m_\mu d_{Z0} + H_{XY}) \left(\frac{\cos \chi_1}{\omega_{p1}} - \frac{\cos \chi_2}{\omega_{p2}} \right) (m_\mu d_{Z0} + H_{XY}) = (1.6 \pm 5.6 \times 10^{-23}) \text{ GeV}$$

EQUATOR


NORTH

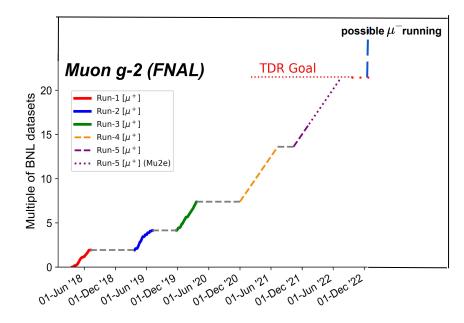
L

Prospects

Sidereal Measurement

- Fermilab Muon g-2 experiment (E989) aims X4 improvement of limits on CPT/LV parameters
 - \circ sensitivity to sidereal variation should be $\sim 5 imes 10^{-25}~{
 m GeV}$
 - Can use Fourier Transform after binning the data in equally spaced time periods as all the events are time stamped
- First search for **annual variation** in $\mathcal{R}(=\omega_a/\tilde{\omega}_{p'})$ will be made using E989 data

Prospects


μ^+/μ^- Differences

- μ^- run opens door to a whole new set of CPT LV measurements the only opportunity in the coming decade
- no sensitivity to **Z**-component of b without μ^-
- no sensitivity to **d** and **H** coefficients
 - possibility of a factor of 20 better comparing FNAL-BNL instead of CERN-BNL
- Full stats top priority! μ^+

Possible future μ^- runs

- 2-3X improvement on BNL μ^- g-2 measurement with ~1 year of FNAL μ^- running

$$\mathcal{L}' = -a_{\kappa}\overline{\psi}\gamma^{\kappa}\psi - \underbrace{b_{\kappa}\overline{\psi}\gamma_{5}\gamma^{\kappa}\psi - \frac{1}{2}H_{\kappa\lambda}\overline{\psi}\sigma^{\kappa\lambda}\psi}_{+\frac{1}{2}ic_{\kappa\lambda}\overline{\psi}\gamma^{\kappa}\overset{\leftrightarrow}{D^{\lambda}}\psi + \frac{1}{2}id_{\kappa\lambda}\overline{\psi}\gamma_{5}\gamma^{\kappa}\overset{\leftrightarrow}{D^{\lambda}}\psi}$$

Experimental Modifications for μ^- running at FNAL :

- Coordination with Mu2e
 - unable to run simultaneously
- Technical challenges:
 - Invert magnet polarities (switch leads)
 - Beam line
 - Main magnet
 - Inflector
 - Kicker
 - Improve vacuum quality
 - More negative charge build up additional pump system (infrastructure exists)
 - Kickers Invert the kicker leads to change the polarity of the kick at full voltage
- ~2.5 less flux compared to μ^+ running due to reduced production rates of π^- compared to π^+ - 6X BNL μ^- data sample with ~1 year of running at Fermilab

Summary :

- The **only** opportunity to measure a_{μ} with the Muon g-2 experiment at FNAL using μ^- beam in the coming decades
 - \circ JPARC only uses μ^+ beam
- Not just one measurement of CPTLV, sensitive to at least 3 CPTLV coefficients $\circ b_{\perp}^{\mu^{\pm}} \longrightarrow$ FNAL μ^{+} data $\circ b_{Z} \longrightarrow$ FNAL μ^{\pm} data $\circ (m_{\mu}d_{Z0} + H_{XY}) \longrightarrow$ JPARC μ^{+} and FNAL μ^{-}
- Repurpose what we already have and make the most out of JPARC and FNAL g-2 experiments

Cross links with other frontiers :

- Muon g-2 Theory initiative <u>https://muon-gm2-theory.illinois.edu/</u>
- Energy/ Accelerator
 - discovery at Muon g-2 (μ^+ or $\,\mu^-$) strongly motivates the muon collider (Capdevilla et. al)

🛠 Fermilab

- Cosmic -
 - Interesting models to look for DM in existing g-2 data (Janish, Ramani)

Thanks to the organizers for the virtual EDM/MDM Workshop!

