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Our purpose today… 

▪  We were both members of the 2015 HEPAP Subpanel on 
Accelerator R&D, and that experience initiated this talk. 

▪  This is NOT our view of that Subpanel report 
▪  NOR is it our view of what the Report should have been. We 

participated fully in the Subpanel process and approve the report! 

▪  This presentation is updated to address the Snowmass 
process 

▪  Broadly, we will look at: 
▪  Motivations for Accelerator R&D  
▪  pp colliders,  
▪  e+e- colliders,  
▪  High intensity proton accelerators for neutrino sources –  
all interlaced with our biases and (and perhaps non-PC) opinions. 
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Why Accelerator R&D 

▪  From P5: “The U.S. could move boldly toward development of 
transformational accelerator R&D. There are profound questions to 
answer in particle physics, and recent discoveries reconfirm the 
value of continued investments.”  

▪  Going much further requires changing the capability-cost 
curve of accelerators, which can only happen with an 
aggressive, sustained, and imaginative R&D program. 
»  That has not happened to the degree recommended 

▪  A primary goal, therefore, remains the ability to build the future 
generation accelerators at dramatically lower cost. 

▪  Focus on outcomes and capabilities that will dramatically improve 
cost effectiveness for mid-term and far-term accelerators.” 
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U.S. Accelerator R&D Support 

▪  Most of the U.S. Accelerator R&D aimed at particle physics 
is funded by the General Accelerator R&D (GARD) program 
within the Office of HEP of the DOE, of roughly $81M/yr. 
HEP also operates a Stewardship program to support more 
broadly applicable accelerator R&D, e.g. radiation oncology, 
with a budget ~$13M.  

▪  A new Office of Accelerator R&D and Production will 
emphasize manufacturing and generic accelerator R&D. 
»  Under Office of Engineering & Technology 

▪  NSF supported an accelerator R&D program at universities 
~$10M/yr. 
»  Emphasizes potentially transformational accelerator physics 

»  Now on hold (No call for proposals for several years) 
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Strategic Goals 

▪  Accelerators for HEP are politically beyond the investment 
strategy of single countries. 

▪  The U.S. HEP Accelerator R&D program should support 
future machines that will be built in an international context. 

▪  The U.S. should aspire to hosting forefront machines as well 
as cooperating abroad. 

▪  The U.S. should support R&D that can significantly lower the 
cost of a facility. 



Context: European Efforts  
in Plasma Accelerators 

▪  Europe & the UK have a rich program in plasma-based 
accelerators at a dozen research labs and universities  
»  Funding of these efforts is not restricted by application, i.e., 

high energy physics versus photon science 

 

▪  AWAKE, a test facility for proton driven PWFA, is now operates at 
CERN 

▪  A very large E.U. initiative in laser-based technology, the 
Extreme Light Infrastructure, is building a major research 
facilities in Frascati 

▪  DESY will have a laser facility with the capabilities of  the 
LBNL-proposed k-BELLA 

▪  Already U.S. researchers depend on European industry for 
laser and optics technology  
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p-p Colliders 

▪  After Snowmass ’13, P5 recommended that the U.S. should consider 
hosting a ~100 TeV class collider & participate in international studies 
of such a machine. Nothing was done on this front. 
»  CERN-led Future Circular Collider (FCC) design for both e+e- and p-p 

»  https://fcc-cdr.web.cern.ch/ 
»  China’s study for Super pp Collider (SppC) and the Circular e+e- 

Collider (CEPC). http://cepc.ihep.ac.cn/preCDR/volume.html 
»  FCC is now part of the updated EU strategy  
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FCC studies analyze a  
100 km circumference 
machine that fits in the difficult 
geology near CERN, allowing 
a ~100 TeV p-p collider. 
 



p-p Colliders 

▪  Unlike e+e-, there are no new concepts for p-p machines.  
»  They are proton synchrotrons, with the major variables being 

circumference and luminosity. 
▪  The world stage will be dominated by the LHC and its high 

luminosity upgrade (HL-LHC) for the next few decades. 



p-p Colliders - Luminosity 

 
▪  The “required” luminosity for a 100 TeV-class discovery machine is 

a complex issue.  
»  Lower mass particles (e.g. Higgs) have increasing cross sections with 

energy, and luminosities could be lower than the LHC for these 
studies.  

»  Maintaining the same reach for new high mass particle discovery 
requires luminosity scaling faster than s because of PDF’s.  

»  For a 100 TeV scale machine, the discovery Luminosity is ~2x1035    
[Ian Hinchcliffe et.al.; arXiv:1504.06108] 

»  Being able to study a high mass, newly discovered particle may 
require a luminosity ~10x that required for a 5σ discovery, i.e. ~1036 

 

»  Nominal proposed luminosities: 
»  SppC 1.2x1035 
»  FCC  5 [→30] x 1034  
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p-p Colliders - China 

▪  The CEPC and SppC studies show ~100 km circumference rings 
in the same tunnel.  

▪  The SppC has a cm energy of ~70 to 100 TeV  
▪  The present political and strategic environment make large 

international intellectual cooperation with China unlikely 
▪  Timescale is uncertain 
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p-p Colliders – Magnets 

▪  For a 100 TeV machine: 
»  270 km requires 4.5 T 

»  100 km requires 16  T 

▪  LHC dipoles operate at 8T * 

▪  The HEPAP-recommended 
Magnet Development Program 
in the U.S. is led by LBNL to 
explore the limits of Nb3SN 
and HTS  accelerator magnets  

▪  Significant, but slow, progress 
in the US towards a 14 T 
accelerator dipole  
»  In 1997 D20 achieved 13.5 T (50 

mm bore) 

 
 
 
»      
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* Level at which all dipoles 
operate reliably, less than the 
highest test field. 
 
** https://usmdp.lbl.gov/ 



Protons radiate! 
 

▪  Proton synchrotron radiation is real at the LHC  
▪  (7 TeV Beam, 27 km circumference, 0.5 A) ; 7.5 kW total; 0.22 W/m. 
 

▪  At 100 km, a 50 TeV, 0.5 A beam radiates 4 MW; 26 W/m. 
»  At ~100 TeV, SR determines the beam dynamics.  

▪  For PSR> ~2 W/m, magnets require aspects of an electron 
synchrotron. 
»  Significant experimental progress by CERN vacuum group  
»  Engineering issues are daunting as fields exceed several T. 
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Blue surface at 2K inside windings 20 K beam screen 



p-p Colliders – Magnets - 2 

▪  The LHC dipoles are wound with Nb-Ti. 
»  They are industrialized, but expensive  
»  ~1/2 total cost of machine 

▪  16 T magnets will require Nb3Sn or HTS (or both).  
▪  The U.S. leads the world in innovative magnet R&D, but 

support from HEP has declined significantly 
»  BNL & LBNL have been starved of GARD support in recent 

years 

»  AUP (Accelerator Upgrade Project) has replaced LARP 
»  FNAL has a facility for building LHC and HL-LHC magnets built 

under the LARP program. 
»  The new U.S. Magnet Development Program is led by LBNL 

»  There is little support for studying the accelerator physics of 
large circumference, low field machines. 
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Scaling	of	collider	cost	with	machine	size	
Is	this	prac6cal	in	any	scenario?	

▪  Given	a	conductor	technology,	dipole	cost	scales	as	stored	energy	
*Cdipole($) = const.*Bρ* [(r+0.5)/2]0.43[0.25+0.55(8/Ld)]0.6 [0.3+0.7(B/4.3)] RHIC scaling 

Breakpoints in 
materials are 

also breakpoints 
in cost 

[1::8::20per kA-m]cern



•  Proton	colliders	have	enormous	stored	energy	in	their	magnets	
and	beams	

 
 

 
 

 
  

* Needs	many	more	machine	sectors	to	keep	dipole	energy	per	sector	similar	to	LHC	
 

•  At	100	TeV	per	beam	&		L = 1035	cm-2s-1,	Pdebris	=	180	kW/side		
»  With	no	shielding	Dose	(Q1)	≈	4	x	108	Gy/year		

Machine	protec6on	will	be	challenging			
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Ecm (TeV) Circumference 
(km) 

Energy in 
beams (GJ) 

Energy in 
dipoles (GJ) 

LHC-14 14 27 ~2 x 0.4 11 
FCC-100 km* 100 100 ~2 x 11 ~180 

For	luminosity	=	1035	cm-2s-1		



p-p Colliders 

▪  Luminosity lifetime will be a significant issue as L > 1035   
»  For FCC 100, luminosity lifetime is 5 hours at 2 x 1035 

•  Practical limiting value without full energy accumulator/injector 

▪  Very little optimization has been done, but it appears that: 
»  Magnets will remain a dominant cost component 
»  Drastically cheaper ($/T-m) will not make these machines 

“affordable” (defined as 2-3 x cost of the LHC.) 

▪  General HEP community feeling is that a p-p collider should be 
the next big machine after the ILC. 
»  Industrial projects of this scale have been managed successfully 

»  BUT can costs can be managed? 
»  Interest in an LHC energy upgrade is all but dead  
»  Would require compelling results from Run-II and on developing 

practical magnet technology at >16T 
»  Not mentioned in EU strategy update 
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The ILC 

▪  The ILC was originally a 500 GeVcm SRF accelerator.  
»  Japan has been considering a bid to host.  

!  ILC would start at 250 GeVcm upgradable to 500 GeVcm 
»  Gradient of Nb cavities is expected to be ~31.5 MeV/m. 

»  Cryomodules are complex and expensive 
»  Their maturity is being validated by extensive use in the 

EuroXFEL and the SLAC LCLS-II. 
»  Nano-beam technology is essential for luminosity 
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The ILC 

▪  The ILC has a mature Technical Design Report & technology 
»  Performance of Superconducting RF (SRF) cryomodules has 

reached expectations.  
»  No other big project is anywhere near this level of technical 

maturity.   
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The ILC 
 
▪  International collaborations have led ILC R&D since 2005. 
»  In summer 2020 ICFA launched the  IDT(International Development 

Team  to define the pre-Laboratory phase prior to construction 

▪  The ILC has broad support in the Japanese Diet, but has been 
going through a long and painful decision process at MEXT  

▪  European Strategy Update is supportive of ILC,  
»  But funds are tight. 
»  The U.S. community is barely surviving on life support.  

19 Kitakami Site 



The ILC and SRF 

▪  Preservation of the ILC SRF and its unique train/bunch format 
appears to require SRF for upgrading from 0.25 to 1.0 TeV 

 

▪  If the ILC proceeds, the agencies should increase R&D on 
higher gradient SRF to decrease the cost of the upgrades 

 

▪  R&D towards 80 MeV/m is planned.  
»  Goal of 80 MeV/m is ~2.5 X present gradient 
»  Basic path is developing new SRF cavities over next 10 years 

»  US efforts at Cornell, FNAL & JLab are focused on Nb3SN coated 
Nb cavities that operate at 4.2K 

»  Support from NSF (Cornell), HEP ( FNAL), and NP (JLab)** 

▪  Replacement of SRF with C3 technology is an interesting 
option but with different train/bunch format 
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** Porter et al. doi:10.18429/JACoW-IPAC2018-WEPMF050, Posen et al. https://arxiv.org/abs/2008.00599,  
Eremeev et al. Review of Scientific Instruments 91, 073911 (2020) 



Circular e+e- Colliders 

▪  Both the CERN FCC-ee & China’s CEPC studies consider p-p and  
e+e- occupying the same tunnel  

▪  Synchrotron radiation strongly constrains the  energy reach of the 
lepton collider at  luminosities ≥ 1034 cm-2s-1 
➢  ~250 GeV for the CEPC and ~450 GeV for FCC-ee 
➢  Luminosity drops rapidly with operating energy of the collider 
➢  Limiting issue is beamstrahlung induced energy spread in the ring. 
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Beyond the ILC 
▪  Many ideas are being developed for TeV scale e+e- acceleration 

that would have gradients > 100 MeV/m, and lower capital cost ($/
TeV), and lower operating costs.  
»  Wakefield Acceleration 

•  Plasma wakefields driven by beams or lasers. 
•  Dielectric wakefields that accelerate a beam in vacuum. 

»  Next generation Normal Conducting RF (C3 technology) 

»  Next generation Superconducting RF 

»  Other collider components also require cost control, e.g., rf 
power sources and e+ sources. 

▪  DOE roadmap* sets of common goals and requirements for 
advanced acceleration techniques:  
»  “Budget constraints demand that down-selection of advanced 

acceleration techniques be performed before extensive further 
investments are made.”  

22 
* Advanced Accelerator Concepts Research Roadmap Workshop Report, Feb. 2016  



Beam-Driven Plasma Wakefield Accelerators  
(PWFA) 

▪  An e- bunch of high charge, small σz, and low emittance 
creates a wakefield of O(10 GV/m) in a (possibly pre-ionized) 
plasma. 

 
 
 
 

23 E. Adli et al, arXiv:1308.1145  



PWFA R&D Facilities 

▪  Premier PWFA R&D facility in the world is SLAC’s FACET-II 
»  Proposal-driven user facility using utilize the 2nd 1/3 of SLAC 

linac. 
»  Produces witness beams of e- or e+, but cannot have e- drive 

with e+ witness beams.  
»  Phase 2 will be able to study all combinations of drive and 

witness beams. 

▪  Demonstrated gradients with low to moderate energy 
spread:  
»  e-       4.4 GeV/m over 0.36 m with 1.4% energy spread. 
»  e+      3.8 GeV/m over 1.3 m with 1.8% energy spread.  

»  Nature Sci Rep 7, 14180 (2017). https://doi.org/10.1038/
s41598-017-14524-4 

▪  AWAKE, a test facility for proton driven PWFA, has been 
operating at CERN since 2017. 
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Laser-Driven Plasma Wakefield Accelerator  
(LWFA) 

▪  BELLA is a LWFA experiment at LBNL using a petawatt laser (40 J 
pulses, 40 fs duration, rep rate 1 Hz).  
»  Has accelerated e- beam > 6 GeV with ~1% energy spread. 
»  First demonstration of staging from gas jet to plasma channel 

»  S.	Steinke	et	al.,	Nature	530,	190	(2016) 
»  Capabilities will be exceed by DESY facility and other ELI work 

▪  Proposed next step is a 1 kHz laser (k-Bella) 
▪  Can sapphire channels survive high average power operation? 

»  Good progress by controlling laser mode 
»  Alternately, formation of long hollow plasma channels under study 
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PWFA and LWFA Challenges 
▪  PWFA & LWFA are thought to offer effective gradients of  O(1 GeV/m)  

»  Energy gain per stage is ~10 to 25 GeV.  

▪  => O(100) stages are needed for a multi-TeV machine. Robust staging 
has not been demonstrated.  
»  PWFA e- drive beams can be magnetically steered into a plasma channel; 

LWFAs need mirrors (which can be damaged by the beam, but may be 
expendable). 

»  Matching, phasing, and steering from one stage to the next will likely be 
challenging. 

▪  Emittance preservation through all the stages of the linac is essential. 
»  Linear colliders rely on very low 6-D emittance beams to focus to nm scale 

for reasonable luminosity at their low rep rate relative to circular machines 

▪  LWFA has not accelerated e+, and PWFA has not accelerated e+ with 
an e- drive.  
»  The plasma physics for e+ and e- main beams are different. 
»  Full simulation requires exoscale computation 

»  Laser efficiency is critical for LWFA. 
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A PWFA Issue 

▪  Stability requirements for a PWFA drive beam are heroic 
due to the large energy (and correspondingly small beam 
emittance) mismatch with a multi-TeV “physics beam” 

▪  Under idealized PWFA operating conditions, a 3 TeV 
collider would require relative drive beam stability of < 1 part 
in 10,000 for example 

▪  Typical operating conditions for existing linear accelerators: 
beam jitter is >10% 

▪  Probably similar issue for LWFAs 
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“ Transverse Jitter Tolerance Issues for Beam-Driven Plasma Accelerators”, T. Raubenheimer 
& G. White, IPAC2019, doi:10.18429/JACoW-IPAC2019-THPGW087 



Direct Laser Acceleration (DLA) 

▪  A nano-machined structure of order 0.5 µm clear aperture is 
used to generate a longitudinal electric accelerating field 
from a laser.  

 

28 
EA Peralta et al. Nature 503, 91-94 (2013) doi:10.1038/nature12664 

DLA structure and experimental set-up. 



DLA Energy Modulation 
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EA Peralta et al. Nature 503, 91-94 (2013)\ 
 doi:10.1038/nature12664 

 
 
DOE/HEP no longer supports DLA research. 
Effort at SLAC now supported by the Moore 
foundation. 
 
Passing MW’s of beam through sub-µm 
guides is not yet credible. 
 

As transverse wakefields scale as the 
inverse cube of aperture, beam breakup 
requires in-depth analysis. 
 

Possible options for other applications such 
as medicine. 700 MeV/m gradient 
demonstrated. 
 



C3 – The Cool Copper Collider 
▪  C3  is a concept for a staged 2 TeVcm  e+e- collider based on high 

gradient, copper structures & distributed RF developed at SLAC. 
▪  The linac, operating under liquid Nitrogen, will have a gradient of 

120 MeV/m, based on the GARD cost goal for RF sources. 
▪  The optimal RF frequency is C-Band (~6 GHz) 

»  A structure is being readied for high power testing at LANL. 

▪  The ILC IP, BDS, and e+ sources are accepted as good designs 
for C3 , but the Damping Rings are not optimal. 
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Two halves of a  
1-m long C-band 
 structure 



Invention of Distributed Feeding Realizes Potential  
of Highly Optimized Standing-Wave Structures 
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•  Distributed coupling, split-block fabrication, high-shunt impedance and 
suppression of breakdown to form new architecture for future facilities 

•  High system efficiency with high gradient and heavy beam loading from 
3x less power into structure. 

3
1

New Scaling Laws Determine the Best 
Performance for Accelerating Structures 

Large isolation between the 
manifolds and the cavities 

Tantawi et al. “Distributed coupling and multi-
frequency microwave accelerators,” Jul. 5 

2016, US Patent 9,386,682. 

RF manifold feeds alternating cells equally 

Scalable technology with enhanced shunt impedance  
capable of reaching high duty factors 

Frequency a/λ Phase 
Adv. 

Rs (MΩ/
m) 

 300K 

Rs 
(MΩ/m) 
– 77K 

 

C-band 
(5.712 GHz) 

0.05 2π/3 133 300 

SLAC 
structure 

 
2π/3 
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Cryomodule design concept for high average power 
implementation for 90% fill factor 
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•  Increased conductivity and hardness 
enable higher gradients at 77 K  

 

•  2.5x less power establishing gradient 
allows for  heavy beam loading even 
at high gradient – Improves system 
efficiency 

 

Nitrogen supply and return  in the same pipe 

~8.9 m Cryomodule 
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Parameters for 2 TeV Conceptual Design Based 
on C-Band 5.712 GHz, a/λ=0.05, 2𝜋/3 Structure 

RF Source Cost ($/Peak kW)* 2 

Temperature (K) 77 

Main Linac Cost (G$ for 2 TeV COM) 6.4 

Beam Loading (%) (Beam/RF power) 42.5 

Gradient (MeV/m) 117 

Pulse Length (µs) 0.25 

Cryogenic Load @ 77K (MW) 25 

Electrical Load (MW) 135 

Parameter* Value 
Source Efficiency (%) 50 
Repetition Rate (Hz) 120 

Electrical Pwr (cents/
kW-hr) 7 

Instr. Add on Length (%) 10 

Tunnel Cost ($k/m) 50 

Structure Cost (k$/m) 100 

Single Beam Power 
(MW) (for 2 TeV COM) 9 

*Assumptions from GARD RF 
Roadmap Decadal Goals; 
Includes 21M$ for each 1.2 MW 
LN reliquification plant  
 

Pulse Format 



34 

•  GARD Decadal survey goal is $2/peak kW. Modulator + RF Source 
•  Modulator from “COTS” parts already at $1 /peak KW,  
•  Modular “Klystrino” Array is making progress, but funding limited. 
 

Significant Progress towards GARD RF Goals 

Low-cost “Digikey 
Catalog” Marx Modulator 

Modular Klystron Array 
operating at extremely 

low voltages  



Accelerator Efficiency 
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L ~  Pbeam / β*y    
▪  β*y  is typically < 1 mm (σ*y a few nm) and L ~ O(1034 cm-2 s-1) 

=> high energy colliders will have beam powers of 10’s of MW.  

▪  Puts a heavy premium on AC-to-beam power efficiency to 
control total power consumption < 1 nuclear power plant! 

▪  High power consumption (600 MW) limits CLIC technology to a 
colliding beam energy of < 3 TeV 



Minimal DOE/HEP  support  
of research in more efficient RF sources 

▪  CLIC:  Wall →RF →Beam →RF →Beam 
▪  PWFA:  Wall →RF →Beam →Plasma →Beam 
▪  LWFA:  Wall →Laser →Plasma →Beam 
▪  C3:   Wall →RF →Beam 
▪  SRF:  Wall →(RF,Cryo) →Beam 
 

▪  Wakefield approaches have ultra-high gradients & would use less 
real estate (good!). 

▪  CLIC has a high efficiency approach to RF pulse compression (good).  
▪  CLIC and PWFA have same basic topology of energy conversions…

different technologies have different efficiencies. 
▪  LWFA presently suffers from low efficiency of drive laser 
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Efficiency: LWFA 

▪  LWFA for HEP needs lasers with efficiency > RF sources. 
»  ~35% efficient diode-pumped ytterbium-fiber lasers exist, but not with 

high peak power needed for LWFA. 
»   ~100 kW multi-mode fiber laser exist 

»  Lasers are rapidly improving. BELLA group* assumes fiber lasers with 
high peak and average power will reach 40% 
»  Can independent lasers efficiently drive coherent plasma waves? 
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Superconducting RF (SRF) 

▪  “Standard” efficiency of wall plug to RF is ~50% 
▪  RF to beam efficiency highly dependent on application, with 

primary  differences from beam loading and duty cycle. 
» ILC main linac efficiency of ~10 % at 500 GeV, with cryogenics 

and all ancillary systems. 30% of wall plug power is cryogenics1 

» New SRF cavities with Nb3SN coating would make a large 
difference here. 

»  PWFA Drive Beam efficiency overall could be ~44%. 

▪  Appears to be very attractive for CW machines, perhaps less 
so for HEP colliders because of capital costs. 

 

▪  1 The ILC TDR, Vol. 3, p 26 
38 



Efficiency: Advanced NCRF 

▪  NCRF must deal with HOM 
»  Requires HOM damping scheme that does not spoil shunt 

impedance 
»  On-going work is promising 

▪  NCRF must produce low cost, efficient high peak power 
sources as an integral part of the design challenge.  
»  Modulator (90%) and “normal” RF (60%) " familiar 45% 
»  Energy Recovery and low voltage (60kV) klystrons ~85% 
»  Structures with wakefield solutions ~60% 
»  Overall efficiency under study. 

▪  NLC “Conventional NCRF” had overall efficiency of 8%1 

▪  C3 first study emphasized capital cost minimization and was too 
conservative, recent estimate are >13% at 120 MeV/m. 
»  Much higher shunt impedance, ~3X for C-Band. 

1 NLC ZDR NLC-1b Table 1-3 
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Crudely Comparable Efficiencies 

▪  Very crude comparison, different maturities, attempt at linac only. 
»  Only CLIC and ILC are ~mature numbers. 

 
▪  CLIC:  Wall →RF →Beam →RF →Beam     8% 

▪  PWFA:  Wall →RF →Beam →Plasma →Beam   13% 

▪  LWFA:  Wall →Laser →Plasma →Beam  

           assuming energy recovery from plasma     11% 

▪  NLC    Wall →RF →Beam       8% 

▪  ILC:   Wall →(RF,Cryo) →Beam  (with cryogenics)  10% 

▪  Adv NCRF (C3):  Wall →RF →Beam                      >13%
  

-    
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Our Opinions! 
 

▪  C3 – Probably best chance for a real, “affordable” machine . 
»  Beam travels in vacuum with reasonable aperture. 
»  No staging or emittance growth issues beyond those due to HOM 

in the structure.  
»  HOM damping must be demonstrated.  

»  Practical gradients > 100 MeV/m have already been demonstrated 

▪  Advanced NCRF should be pushed vigorously 
»  Significant potential applications across DOE 

»  Hopefully new SC Office of Accelerator R&D & Production will help 
 

▪  SRF as an option for linear colliders is being “stress-tested” for 
“affordability” with PIP-II and LCLS-II. 

 

▪  If the ILC does not proceed in Japan, a new effort will need 
much higher gradient technology. 
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Our Continuing Opinions! 

▪  Both PWFA and LWFA are long shots, but they deserve 
another decade of support. 
»  Both are intellectually rich and attract outstanding students. 
»  Both techniques need to demonstrate full staging and 

emittance preservation, as well as e+ acceleration to be 
plausible for HEP.  

»  BELLA, UK, and European efforts are already working on 
applications to FEL.  

»  LWFAs could be promising for FELs (or hyperspectral sources) 
if more cost-effective lasers are developed 
»  A credible science case requires development 

 

▪  Direct Laser Acceleration – no convincing plausibility for a TeV-
class collider anytime soon. 
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High Intensity Protons  

▪  Long Baseline Neutrino oscillations are the major scientific 
thrust in the U.S. – an international effort led by FNAL. 

▪  FNAL will provide neutrino beams to kiloton-scale liquid Ar 
detectors at Homestake. 

▪  FNAL will put 800 kW on target at the beginning, and move 
towards 2 MW.  

▪  These powers require improved targets and horns, with 
better reliability and more neutrinos towards Homestake. 
»  R&D in these areas is supported by GARD and LBNF. 
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Yun He (FNAL) 

Looking down  
a neutrino horn 



High intensity protons from cyclotrons 
IsoDAR 

▪  The collaboration is developing a high current, 600 kWcw low 
energy cyclotron H2

+ for a definitive sterile neutrino search 
▪  Under NSF funding the group has tested a suitable ion source, is 

building a RFQ injector, and has tested a suitable spiral inflector 
▪  The cyclotron design has been a collaboration with INFN/Catania, 

PSI, and three commercial cyclotron manufacturers 
▪  Ongoing end-to-end simulations show no show-stoppers to 

deliver 5 mA of H2
+ beam on target. 
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A well-shielded target 
converts the beam 
protons into copious 
electron-anti-neutrinos 
for injection into the 
KamLAND detector 
 



High Current Dynamics 

▪  The high power beams require high currents where space 
charge is a problem at low energy.  

▪  Advances in integrable nonlinear focusing lattices, hold 
significant promise to control resonances and space charge 
tune shift and will be studied at the FNAL IOTA ring.  

▪  For cyclotrons, experiments at PSI have discovered a “vortex 
motion” that mitigates space charge defocusing of a well-
matched beam. 
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The Advanced Superconducting Test 
Accelerator (ASTA), now being built,  
will provide a high peak current e- 
beam to IOTA.   



FNAL Protons 

▪  Proton Improvement Plan II (PIP-II) is now being built as a new 
SRF linac taking protons to 800 MeV.  
»  It will feed the existing Booster (8 GeV); and then to the existing 

Main Injector complex to 120 GeV. 
 

▪  The next step: replace the aging booster, perhaps by another 
superconducting linac or a rapid cycling synchrotron. 
»  GARD supported R&D will inform this choice.  
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More Opinions 

▪  Both CERN and China are pursuing 100 km circumference rings for 
first e+e- and then 100 TeV scale pp colliders. 
»  It seems very unlikely that both will happen. 
»  The e+e- machines have enormous synchrotron radiation loads, 

usually fixed as a design parameter at 50 MW/beam.  

▪  The p-p machines will require high field magnets that are beyond the 
state of the art, dramatically so for 20 T dipoles. 

▪  Serious optimization studies, including consideration of much larger 
rings, are eagerly awaited.  
»  The FCC report is a thorough, modern basis for programmatic 

decision given strong enough physics justification  

»  U.S. participation in the FCC effort was embarrassingly weak 

»  We should participate in optimization studies 
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More Opinions 

▪  Next generation p-p machines may not be “affordable” 
»  Energy frontier discovery machines might move to e+e- with their ~x10 

advantage in constituent energy. 
»   BUT much lower cost e+e- acceleration would be required. 

»  Same order of $/GeV as proton synchrotrons  
»  See Burton Richter, “High Energy Colliding Beams; What Is Their 

Future?,”  arXiv:1409.1196   
»  Collision energy > 2 – 3 TeV needs adiabatic final focus (e.g., 

plasma lens) or 4 beams to overcome quantum excitation of 
emittance  

 

▪  There is new interest in muon colliders 
»  Muon colliders were not considered following the P5 recommendation 
»  Significant challenges with muon decays, as background and radiation 

hazards 
»  A muon based neutrino source would be a future possibility if warranted 

by the science 
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The Accelerator R&D Subpanel 
 could not meet P5 hopes. 

▪  There are no new concepts for proton acceleration. 
»  A serious optimization study that  includes careful analysis of  

$/T-m for magnets is still in the future. 
▪  ILC is (to put it mildly) uncertain. 
▪  GARD funding is too small to push hard on the new 

techniques. 
»  Advanced NCRF (e.g., C3) is promising, but so far has received 

insufficient support. 
»  Wakefield acceleration approaches for e+e- are interesting, but their 

wall plug efficiency seems unlikely to surpass that of CLIC 
»  Many technical problems remain, particularly for the plasmas 

»  SRF is relatively low gradient and expensive 
▪  Support for fundamental theoretical & computational 

accelerator physics is grossly insufficient to ensure a 
healthy, broad program of accelerator research. 
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A distilled bottom line 

 
▪  To make substantial advances in accelerator 

capabilities consistent with P5’s aspirations the GARD 
program needs an investment budget that 
»  Grows with inflation 
»  Is not a slave to institutional priorities 
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Backup 
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New Beam Screen Design 

tested by the VCS-Group at CERN 

Key issue is managing pressure drops in capillaries 

In caption list temperatures 



The OHEP GARD Program 

FY2018 data  



REBCO – a “silver bullet? 
Does not include manufacturing costs 
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Units NbTi Nb3Sn REBCO 

Peak	field	at	conductor Tesla ~	9.5 <19 >30 

Opera6ng	field	of	dipole Tesla 8 16 20 (?) 

Operatng	temperature K 1.9 4.2 20	–	40 

Current	density	in	SC A/mm2	 900 400 >3000 

Frac6on	SC	in	wire % 60 50	–	60 1 

Rela6ve	cost	wrt	NbTi $	/	kA-m 1 8 100 

Rela6ve	cost	/	m	of	SC	for	dipole $	/	kA-m 1 8 33* 

Rela6ve	length	of	dipoles 	 1 0.5 0.4 

Rela6ve	cost	of	structure 	 1 4 6.25 

Stored	energy MJ	/	m 0.35 1 6.9 
*	assumes	HTS	insert 



Who does U.S. Accelerator R&D 

▪  HEP accelerator R&D in the U.S. is done by the labs (Argonne, 
BNL, Cornell, FNAL, JLab, LANL, LBNL, MSU, SLAC) and by 
several universities:  
» Duke, Indiana U, MIT, Northern Illinois, Old Dominion, Purdue, 

Stanford, Texas A&M, UCLA, U Maryland, U Michigan, USC, UT-
Austin, U New Mexico, Yale   

▪  University research programs have produced a rich harvest of 
ideas that have evolved into major research facilities such as 
LCLS, FACET-II and BELLA. 

» Experimental capabilities on campus are essential to continued 
progress 

▪  University research programs are critical for the education of 
accelerator physicists and engineers. 

 

▪  Most facilities are at the labs, and the user facilities work with 
researchers from the universities.  
» The collaboration is vital and necessary for progress. 
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Drive Beams 

▪  “Conventional RF” – Modulator, Klystron, RF distribution 
but no pulse compression can have wall plug to RF 
efficiency ~50%. 

▪  “Drive Beam Accelerators” required for CLIC and PWFA 
must use highly beam-loaded linacs, with efficiencies 
~90%.  
»  However, such linacs have very low gradients, energy transients, 

and couple beam current fluctuations to energy fluctuations. 
»  (CW SRF is an attractive alternative for beam driven PWFA) 
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