

Dark Matter Production at High Intensity Facilities

Gordan Krnjaic

RF6 Kickoff Meeting, August 12, 2020

Remarkable Evidence for Dark Matter

Multiple independent, consistent observations over **nearly** all of spacetime: kpc-Gpc, 13.7 Gyr ago-today **Holy Grail: extend our knowledge to terrestrial scales << kpc** What Clues Do We Have?

Huge space of allowed microscopic theories Evidence only extends down to ~kpc (dwarf galaxy) scales

Theoretical guidance is essential Need organizing principle for systematic progress

Overview

Preliminaries

B/K-Factories

Beam Dump Production

Missing Energy/Momentum

Overview

Preliminaries

B/K-Factories

Beam Dump Production

Missing Energy/Momentum

What kind of DM can we probe?

High intensity facilities: Ecm < few GeV Kinematically produce sub-GeV DM

Need "large" couplings to visible matter Accelerators sensitive to BSM couplings $g \gtrsim 10^{-4}$

Therefore $\begin{cases} Any^* DM \text{ candidate that can be made in} \\ accelerators was in equilibrium with SM in \\ the early universe \quad n_{\chi} \sim n_{\gamma} \sim T^3 \end{cases}$

Model independent consequence

Equilibrium Narrows Mass Range! nonthermal nonthermal 10^{-20} eV $\sim 100 M_{\odot}$ $m_{Pl} \sim 10^{19} \text{ GeV}$ $m_p \sim \text{GeV}$ $m_e \sim \mathrm{MeV}$ < MeV m_Z > 100 TeV too much **Neff / BBN Light DM** "WIMPs" **Direct Detection High Energy Colliders Indirect Detection**

Equilibrium Narrows Mass Range! nonthermal nonthermal 10^{-20} eV $\sim 100 M_{\odot}$ $m_{Pl} \sim 10^{19} \text{ GeV}$ $m_p \sim \text{GeV}$ $m_e \sim \mathrm{MeV}$ < MeV m_Z > 100 TeV too much Neff / BBN **Light DM** "WIMPs" "When the facts change, I change my mind. What do you do?" **This talk** - John Maynard Keynes 8

Light DM vs. WIMPs

Light DM must be SM neutral

Else would have been discovered (LEP, Tevatron...)

Light DM vs. WIMPs

Light DM must be SM neutral Else would have been discovered (LEP, Tevatron...)

Light DM requires light new force carriers "mediators" Must annihilate away huge thermal density. Weak force too weak:

$$\sigma v \sim G_F^2 m_{\chi}^2 \sim 10^{-29} \,\mathrm{cm}^3 \,\mathrm{s}^{-1} \left(\frac{m_{\chi}}{\mathrm{GeV}}\right)^2$$

need $\sigma v \sim 10^{-26} \mathrm{cm}^3 \mathrm{s}^{-1}$ to avoid early universe overproduction

Light DM vs. WIMPs

Light DM must be SM neutral Else would have been discovered (LEP, Tevatron...)

Light DM requires light new force carriers "mediators" Must annihilate away huge thermal density. Weak force too weak:

$$\sigma v \sim G_F^2 m_{\chi}^2 \sim 10^{-29} \,\mathrm{cm}^3 \,\mathrm{s}^{-1} \left(\frac{m_{\chi}}{\mathrm{GeV}}\right)^2$$

need $\sigma v \sim 10^{-26} \mathrm{cm}^3 \mathrm{s}^{-1}$ to avoid early universe overproduction

Annihilation through renormalizable "portal" interactions

Higher dimension operators have same problem as weak force [See Adam Ritz's talk]

Light mediators are not optional!

Why Accelerators? Completeness

Traditional direct detection loses sensitivity

Nuclear recoils below ~ keV threshold

$$E_R = \frac{q^2}{2n_N} \sim \text{keV}\left(\frac{m_{\chi}}{\text{GeV}}\right)^2$$

Why Accelerators? Completeness

Traditional direct detection loses sensitivity

Nuclear recoils below ~ keV threshold

$$E_R = \frac{q^2}{2n_N} \sim \text{keV}\left(\frac{m_{\chi}}{\text{GeV}}\right)^2$$

Novel electron target direct detection

Promising for sub-GeV range, but hard to probe many scenarios Rate suppressed for velocity dependent and inelastic models Why Accelerators? Completeness

Traditional direct detection loses sensitivity

Nuclear recoils below ~ keV threshold

$$E_R = \frac{q^2}{2n_N} \sim \text{keV}\left(\frac{m_{\chi}}{\text{GeV}}\right)^2$$

Novel electron target direct detection

Promising for sub-GeV range, but hard to probe many scenarios Rate suppressed for velocity dependent and inelastic models

Indirect detection generically unavailable

CMB bounds exclude relic annihilation for s-wave processes < 10 GeV Need annihilation to end before recombination —> won't occur today

Accelerators are unaffected by these limitations

Why Accelerators? Accessible Thermal Targets

Overview

Preliminaries

B/K-Factories Observable: initial & final state four vectors

Beam Dump Production

Missing Energy/Momentum

B-Factories

"Traditional" mono-photon +missing energy search

 $E_{\rm cm} \approx 10 \,{\rm GeV}$ $\mathcal{L} \sim \mathcal{O}(10) \,{\rm ab}^{-1}$

Izaguirre, GK, Schuster, Toro 1307.6554 Essig, Mardon, Papucci, Volansky Zhong 1309.5084

$$m_{\chi\chi}^2 = (p_\gamma - p_{e^+} - p_{e^-})^2$$

BABAR, BELLE-II, BES-III See Christopher Hearty's talk

B-Factories

signal rate $\propto \epsilon^2$

BaBar Collaboration 1702.03327

Izaguirre, GK, Schuster, Toro 1307.6554 Essig, Mardon, Papucci, Volansky Zhong 1309.5084 See Christopher Hearty's talk

Kaon Factories

Secondary kaon beam Rare DM decays

$$K^+ \to \mu^+ \nu_\mu V, \quad V \to \chi \chi$$

Kinematically distinct from main channel Probe of muon, neutrino philic DM Measure incident kaon, daughter muon

 $E_K \approx 75 \,\mathrm{GeV}, \ N_K \sim 10^{13} \mathrm{ proj}.$

GK, Marques-Tavares, Redigolo, Tobioka 1902.07715

$$m_{\rm miss}^2 \equiv (p_K - p_\mu)^2$$

signal rate $\propto \epsilon^2$

See Diego Redigolo's talk

Kaon Factories

Secondary kaon beam Rare DM decays

$$K^+ \to \mu^+ \nu_\mu V, \quad V \to \chi \chi$$

Kinematically distinct from main channel Probe of muon, neutrino philic DM Measure incident kaon, daughter muon

 $E_K \approx 75 \,\mathrm{GeV}, \ N_K \sim 10^{13} \mathrm{ proj}.$

GK, Marques-Tavares, Redigolo, Tobioka 1902.07715

signal rate $\propto \epsilon^2$

See Diego Redigolo's talk

Overview

Preliminaries

B/K-Factories

Beam Dump Production

Observable: energy deposited in downstream detector

Missing Energy/Momentum

Neutrino Mode vs. Beam Dump Mode

MiniBooNE Collaboration arXiv1807.06137

Continuum production Similar in both modes

Uses full beam energy Important for heavy X

Thickness irrelevant if greater than rad. length

MiniBooNE, Phys. Rev. Lett. 118 (2017) and 1807.06137

*See Asher Berlin's talk

Izaguirre, Kahn, GK, Moschella 1703.06881

Positron Beam Dump

- E_{beam} = 1.8 -- 5.3 GeV
- $I_{beam} \simeq 2.3$ nA at target
- quasi-CW during ~millisecond spills @ 60H;
- pulse structure: 168ns

Fixed target, calorimeter 10m downstream.

Slide: Jim Alexander

Positron Beam Dump

Source: Jim Alexander

Warning old plot

Overview

Preliminaries

B-Factories (e+e- colliders)

Beam Dump Production

Missing Energy/Momentum Observable: beam energy loss + no other SM activity

Electron/Muon Missing Energy

NA64 currently running @ CERN

Andreas et. al. 1312.3309 NA64 Collaboration 1906.00176 Gninenko, Krasnikov, Mateev 2003.07257

(see Tim Nelson's talk)

LDMX Collaboration 1808.05219

Backgrounds per incident electron

LDMX 1808.05219

see Tim Nelson's talk

Berlin, Blinov GK, Schuster, Toro arXiv: 1807.01730

Kahn, GK, Tran, Whitbeck 1804.03144 (JHEP 2018)

Comparing Muon Beams: NA64µ and M³

Gauged $L_{\mu} - L_{\tau}$ Interaction

Also resolve muon g-2 with light physics Compatible parameter space for freeze-out

See Nhan Tran's talk

New Frontier of DM Searches: Accelerators

https://science.energy.gov/~/media/hep/pdf/Reports/201809_HEP-PI-BRN-Dark-Matter_New_Initiatives.pdf

Thanks!

What kind of DM? Use CMB to classify viable options

DM SM

Rare out-of-equilibrium annihilation ionizes H (z=1100) CMB photons pass through more plasma (modifies peaks)

Rules out s-wave relic cross section for DM < 10 GeV