RF6 Kickoff Meeting

Image: Aug 12, 2020, 12:00 PM → Aug 13, 2020, 5:00 PM US/Eastern

Dark Sectors with Electron Beam Dumps and Positron Beams (on fixed targets)

M.Battaglieri JLab/INFN

Outline

- Beam dump experiments
- BDX and other proposals
- Positron beams
- PADME & other proposals

Jefferson Lab

Dark forces and dark matter (Light WIMPs - light mediators)

Jefferson Lab

2

Dark Sectors with Electron Beam Dumps and Positron Beams

Experimental techniques

3

Beam-dump experiments - visible -

* e- beam incident on thick target
* A' is produce in a process similar to ordinary Bremsstrahlung
* A' carries most of the beam energy
* A' emitted forward at small angle
* A' decays before the detector

4

Jefferson Lab

Exclusion limits (BD - visible)

Best exclusion limit from EI37

• SLAC electron beam: 20 GeV, 2x10²⁰ EOT

L_{dec}

- Detector: 8 r.l. em calorimeter (hodo + cvrt + MWPC)
- Size: I.5m xI.0 m at ~380m from the BD
- Cosmic bg suppressed by directionality and time coincidence

Detection Thr (X-e scattering only): I-2 GeV
0 E V E N T S DETECTED

Jefferson Lab

5

The BDX experiment

Two step process

I) An electron radiates an A' and the A' promptly decays to a χ (DM) pair

II) The χ (in-)elastically scatters on a e-/nucleon in the detector producing a visible recoil (GeV)

Experimental signature in the detector:

X-electron \rightarrow EM shower ~GeV energy

Jefferson Lab

BDX at JLab

★ High energy beam available: II GeV
 ★ The highest available electron beam current: ~65 uA
 ★ The highest integrated charge: I0²² EOT (41 weeks)

Jefferson Lab

7

★ BDX detector located downstream of Hall-A beam dump
 ★ New underground experimental hall

The BDX detector

Detecting the X

E.M. Calorimeter A homogeneous crystal-based detector combines all necessary requirements

Modular EM calorimeter

- 8 modules 10x10 crystals each
- 800 CsI(TI) crystals (from BaBar EMCal)
- 6x6 mm² Hamamatsu SiPM readout
- 50 x 55 x 295 cm³

Rejecting the bg

Cosmic • Beam-on

Two active veto layers Plastic scintillator +WLS with SiPM and PMT readout

- Outer Veto: 2cm thick
- Inner Veto: I cm thick
- Lead Vault: 5cm thick

8

Dark Sectors with Electron Beam Dumps and Positron Beams

X production and detection

• Detailed simulations using ad-hoc MC code to describe the A' production, decay (A' $\rightarrow \chi \chi$) and interaction in the BDX detector (X-e)

• Detailed description of Hall-A beam dump (production) and BDX detector (detection) using GEANT4

Test to measure the beam-on background

Measurement campaign to characterize the flux of high-energy μ produced in the Hall-A beam dump

- Pipe downstream of Hall-A beam-dump at BDX location
- Insert a CsI(TI) crystal surrounded by plastic scintillators
- Same detector technology proposed for BDX detector
- Measure μ flux when II-GeV beam is on

Downstream of the Hall-A beam dump - TODAY -

11

- E_{Beam} = 10.6 GeV
- Diffuser: ON
- + I week taken in Well II with E_{beam} =4.3 GeV

The first muon signal on the scope

The BDX-Hodo lowered in well I

Jefferson Lab

12

Dark Sectors with Electron Beam Dumps and Positron Beams

Data/Sim comparison

Jefferson Lab

13

- ★ Absolute rates for data and simulations in agreement within the densityrelated uncertainty band
- ★ The **shape** of rates sampled at different heights is well reproduced by simulations (gaussian with the same σ)

Good agreement between data and simulations prove: * the BDX simulation framework is reliable

* no significant contribution from n bg (high energy n and/or pile-up effects)

* Particles produced in the BD by the II GeV beam are tracked to BDX detector location

- 6.6m iron shield (+2m concrete) to stop high energy muons
- different shielding configuration tested

* High statistics simulations: 300 cores x 3 months simulating ~1017 EOT equivalent at BDX detector location

\star No n and γ with E>100 MeV are found at the detector location

***** Muons

- All forward-going muons are ranged out
- Large angle µs may enter in BDX volume (R~0.02 Hz)
- They are rejected by combination of veto and threshold
- Shielding configuration leading to 0 bg events found
- An optimized shielding will be defined at the time of the new experimental Hall design

MC Simulations: neutrino background

***** Neutrino

- $\pi \rightarrow \mu \nu_{\mu} \mu \rightarrow e \nu_{\mu} \nu_{e}$
- Mainly low energy (<60 MeV) from decay at rest
- Some v produced in HadShower and boosted to BDX detector

Non-negligible contribution of high energy V interacting in the BDX detector

• FLUKA to generate and propagate v (1.5x v flux obtained by G4)

- + FLUKA NUNDIS/NUNRES to simulate ν interaction with CsI(TI) BDX crystals
- G4 to simulate the detector response to v-CsI(TI) interaction products

NC $V_{\mu} + N \rightarrow V_{\mu} X$: all rejected by the det. threshold (limited energy transfer to N) $V_{e} + N \rightarrow V_{e} X$: all rejected by the det. threshold (limited energy transfer to N)

CC $v_{\mu} + N \rightarrow X + \mu$: all rejected by identifying the scattered muon $v_{e-} + N \rightarrow X + e^{-}$: the largest contribution to over-tresh. hits in BDX

Different scattered e⁻ angle for signal and bg: • $X_{DM} + e^{-} \rightarrow X_{DM} + e^{-}$:forward peaked for • $v_{e^{-}} + N \rightarrow X + e^{-}$:spread over all angles

neutrino BG can be identified and suppressed!

High-stats FLUKA simulations demonstrate:

* BDX only limited by the v irreducible bg
* Expected beam-related bg counts ~5 events

Jefferson Lab

BDX expected reach

Beam time request

- 10²² EOT (65 uA for 285 days)
- BDX can run parasitically to any Hall-A E_{beam}>10 GeV experiments (e.g. Moeller)

Beam-relate	d background	Cosmic background			
Energy thresho	d Nv (285 days)	Energy thresho	d √ Bg (285 days)		
300 MeV	~10 counts	300 MeV	<2 counts		

BDX sensitivity is 10-100 times better than existing limits on LDM

Jefferson Lab

16

Dark Sectors with Electron Beam Dumps and Positron Beams

17

Jefferson Lab

BDX-MINI

- While waiting for the new BDX experimental hall ...
- Take advantage of two wells dug for muon tests
- E_{beam}=2.2 GeV, 5x10²¹ EOT expected for 2019/20, no muons at well locations
- Opportunistic measurement to test BDX experiment in real conditions (cosmic/acc bg, data analysis)
- limited reach but first BDX@JLAB result!
 - Same technology proposed for BDX
 - BDX-MINI fits in BDX-HODO vessel
 - 44 PbWO4 PANDA/FT-Cal crystals (~1% BDX active volume)
 - 6x6 mm2 SiPM readout
 - 2 active plastic scintillator vetos: cylindrical and octagonal (8 sipm each) + 2x lids
 - Passive W shielding

BDX-MINI

- Installed in March 2019
- Run started in Dec 2019
- Collected 2e21 EOT (20% BDX!) in ~4 months
- Collected an equivalent time of cosmic
- Good detector performance with high duty factor
- Data analysis in progress
- First physics results!
- Same sensitivity of EI37!!

MESA @ MAINZ

BeamDump@MAINZ DARKMESA

~1000 crystals and photomultipliers from the

former A4 experiment

PbF₂ crystals

0.13 m³ PbF₂

+ additional Pb glass

- $\alpha D=0.5$ and $m\gamma'=3 \cdot m\chi$
- 3 · 10²² EOT
- Energy detection threshold 14 MeV
- Detector efficiency 90%
- No backgrounds

Jefferson Lab 19

A' Production mechanisms - e[±]

$$\sigma \approx \frac{8}{3} \frac{\alpha^3 \epsilon^2 \beta_{A'}}{m_{A'}^2} \chi \log\left(\frac{1}{(1-x)_c}\right),$$
$$(1-x)_c = \max\left(\frac{m_e^2}{m_{A'}^2}, \frac{m_{A'}^2}{E_0^2}\right).$$

The Weizsacker-Williams approximation (A'-strahlung)

- The incoming electron 'see' a fast-moving cloud of effective photons to scatter from
- Photons are almost on-shell (low Q2) \rightarrow transverse photons ~ e⁻ γ_{Real} scattering
- Same treatment as the regular bremstrahlung
- Regularisations occurs in the case of interest $M_{A'} >> M_{e-}$
- Effective photon flux χ is critical, accounting for nuclear effect using FF

• A more rigorous treatment has been proposed in Phys.Rev. D95 036010 (Yu-Sheng Liu, David McKeen, and Gerald A. Miller) to overcome the WW approximation, the simplification in PS calculation and other approximations

• NON-RESONANT annihilation $\sim \epsilon^2 \alpha^2$

$$\sigma_{nr} = \frac{8\pi\alpha^2\varepsilon^2}{s} \left[\left(\frac{s - m_{A'}^2}{2s} + \frac{m_{A'}^2}{s - m_{A'}^2} \right) \log \frac{s}{m_e^2} - \frac{s - m_{A'}^2}{2s} \right]$$

- A' along (e⁺e⁻⁾ direction

 e^{\pm}

~ ε² α³

• **RESONANT** annihilation $\sim \epsilon^2 \alpha$

$$\sigma_r = \sigma_{\rm peak} \, \frac{\Gamma_{A'}^2/4}{(\sqrt{s} - m_{A'})^2 + \Gamma_{A'}^2/4} \; , \label{eq:sigma_r}$$

$$\Gamma_{A'} = \frac{1}{3} m_{A'} \varepsilon^2 \alpha \qquad \sigma_{\text{peak}} = \frac{12\pi}{m_{A'}^2}$$

- Two-body process
- A' forward-peaked along e⁺ direction
- $E_{A'} = E_R = m^2_{A'}/2_{m_e}$

- Known and used
- Collider (missing mass experiments)
- Thin target experiments (visible decay)

e+e-
$$\rightarrow \gamma' \gamma \rightarrow \mu \mu \gamma$$

 \rightarrow BABAR, BELLE, KLOE, CLEC

Z

21

 e^{\pm}

Ź

(a)

Jefferson Lab

e⁺ annihilation on fixed (thin) target - invisible -

PADME@LNF

- **Beam**: e+ form LNF LINAC, 550MeV, multiplicity ~ 20k e+/ bunch, bunch duration 250 ns, frequency 49 Hz.
- Diamond active target 100 µm thickness: position, size and intensity of incoming beam
- Dipole **magnet** of 0.45 T to deflect charged particles out calorimeter
- Plastic scintillators veto system + high energy positron veto in order to detect charged particles bent by magnet
- Electromagnetic calorimeter (ECAL) composed of 616 BGO crystals
- Small angle calorimeter (SAC) composed of 25 PbF2 crystals
- Already collected 5 10¹² POT (expected 10¹³ POT)

Missing mass search:

- Independent of A' decay mechanism
- Bump hunt (monophoton@collider)
- Need a positron beam
- Limited M_{A'} accessible
 - I GeV beam: $M_{A'} < 31$ MeV
 - 5 GeV beam: $M_{A'} < 71$ MeV

Jefferson Lab

Positrons in light DM searches

Experiment	Lab	Production	$D_{ m etection}$	V_{erte_X}	$M_{ m ass}(M_{ m e}V)$	$^{Mass\ Res.\ (MeV)}$	Beam	$E^{\mathrm{beam}}~(\mathrm{GeV})$	lbeam or Luni	Machine	$^{1st} Ru_{n}$	$^{N\mathrm{ext}}$ R_{un}
APEX	JLab	e-brem	$\ell^+\ell^-$	no	65 - 600	0.5%	e^-	1.1 - 4.5	150 μA	CEBAF(A)	2010	2018
A1	Mainz	e-brem	e^+e^-	no	40 - 300	?	e^-	0.2-0.9	140 µA	MAMI	2011	_
HPS	JLab	e-brem	e^+e^-	yes	20 - 200	1–2	e^-	1–6	50–500 nA	CEBAF(B)	2015	2018
DarkLight	JLab	e-brem	e^+e^-	no	< 80	?	e^-	0.1	10 mA	LERF	2016	2018
MAGIX	Mainz	e-brem	e^+e^-	no	10 - 60	?	e^-	0.155	1 mA	MESA	2020	-
NA64	CERN	e-brem	e^+e^-	no	1 - 50	?	e^-	100	$2\times 10^{11}~{\rm EOT/yr}$	SPS	2017	2022
Super-HPS	SLAC	e-brem	vis	yes	< 500	?	e^-	4 - 8	$1 \ \mu A$	DASEL	?	?
(TBD)	Cornell	e-brem	e^+e^-	?	< 100	?	e^-	0.1-0.3	100 mA	CBETA	?	?
VEPP3	Budker	annih	invis	no	5 - 22	1	e^+	0.500	$10^{33}{\rm cm}^{-2}{\rm s}^{-1}$	VEPP3	2019	?
PADME	Frascati	annih	invis	no	1 - 24	2 - 5	e^+	0.550	$\leq 10^{14}e^+{\rm OT/y}$	Linac	2018	?
MMAPS	Cornell	annih	invis	no	20 - 78	1 - 6	e^+	6.0	$10^{34}{\rm cm}^{-2}{\rm s}^{-1}$	Synchr	?	?
KLOE 2	Frascati	several	vis/invis	no	$< 1.1 { m GeV}$	1.5	e^+e^-	0.51	$2\times 10^{32}{\rm cm}^{-2}{\rm s}^{-1}$	$DA\phi NE$	2014	-
Belle II	KEK	several	vis/invis	no	$\lesssim 10{\rm GeV}$	1 - 5	e^+e^-	4×7	$1 \sim 10~{\rm ab^{-1}/y}$	Super-KEKB	2018	-
SeaQuest	FNAL	several	$\mu^+\mu^-$	yes	$\lesssim 10{\rm GeV}$	3-6%	р	120	10^{18} POT/y	MI	2017	2020
SHIP	CERN	several	vis	yes	$\lesssim 10{\rm GeV}$	1 - 2	р	400	$2 \times 10^{20} \text{ POT}/5 \text{y}$	SPS	2026	-
LHCb	CERN	several	$\ell^+\ell^-$	yes	$\lesssim 40{\rm GeV}$	~ 4	рр	6500	$\sim 10{\rm fb^{-1}/y}$	LHC	2010	2015

arXiv:1608.08632v1 [hep-ph] 30 Aug 2016

Jefferson Lab

e⁺ annihilation on fixed (thin) target - invisible -

Jefferson Lab

PADME@JLAB

Reusable PADME components:

- Target PADME carbon target can be installed at CEBAF
- Calorimeter PADME Ecal meets all requirements of the experiment (energy resolution, angular resolution, size)
- Veto System technology and front-end electronics from PADME veto can be reused

New equipment:

- DAQ system suitable for a CW beam
- Main limitation: limited energy in the CM \sim sqrt(E_{beam})
- High energy positron beams are not (yet) available
- The highest energy at JLab (~11 GeV) Max $M_{A'}$ ~ 106 MeV

Main processes that result in a single gamma hitting the ECal:

Jefferson Lab

25

Positrons@beam-dumps

• An electromagnetic shower is a powerful source of positrons!

$$N_{A'} = \frac{N_A}{A} Z \rho \int_{E_{min}^R}^{E_0} dE_e \ T_+(E_e) \, \sigma(E_e) \ ,$$

$$N_{A'} \simeq \frac{\pi}{2} \frac{N_A}{A} Z \rho \, \sigma_{\text{peak}} \Gamma_{A'} \, \frac{m_{A'}}{m_e} \, T_+(E_R)$$

for RESONANT annihilation and Γ smaller than T₊ variation

Track-length $T_+(E)$: integral of positron fluence over the beam-dump volume

- density of particles in the volume
- path length of a positron in the BD with energy between E and E+dE
- I_{e}^{+} = differential (time and energy) energy distribution (positron current)

 $T_+(E)$ can be evaluated analytically or by simulations (GEANT4/FLUKA) sampling the shower profile at different depth in the BD

Good agreement (high energy) with analytical calculation by Y. S. Tsai and V. Whitis, Phys. Rev. 149, 1248 (1966)

Effects on current exclusion limits (BD - invisible)

Exclusion limits (BD - invisible)

Exclusion limits in case of running the experiments with a positron beam (assuming the same experimental set-up)

decay search

riments _S-ll 4 GeV e-

am with 10²²

28

10⁻⁴LHC

10⁻⁵ LEP

10-6

 10^{-7}

10⁻⁸

10⁻⁹

10⁻¹⁰

10-11

10-12

10-13

10-14

10-15

 10^{-16}

Jefferson Lab

BaBar

NA64

E137

LSND

 $\epsilon^2 \alpha_D \left(m_{\chi}/m_{A'} \right)^4$

II

Σ

e⁺ annihilation on fixed (thick) target - invisible -

- Active beam-dump experiment (*á* la NA64 but with positron!)
- Clear signal (peak!) due to the annihilation: $M_{A'} = Sqrt(2 m_e E_{miss})$
- Missing energy exp (e+ $Z \rightarrow$ e+ Z' A' with A' \rightarrow invisible)
- 11 e+ beam, low current, 60 Hz
- Active target (calorimeter)
- Exclusion plots based on 1013 POT
- Detector: ECAL to measure e+; HCAL to veto

Conclusions

- * Extensive experimental plans at high intensity e-facility: JLab, LNF, Cornell, Mainz, SLAC (and proton beam at FNAL and CERN)
- * Beam-dump experiments provided stringent limits for visible and invisible searches
- *BDX: CsI EM calorimeter + 2x activeVetos running parasitically downstream of JLab Hall-A beam dump in 1y would set 10-100 times better limits
- * BDX-MINI validated BDX techique providing the first physics results hitting E137 limits
- * Electron-positron annihilation has been extended from colliders to (thin) fixed target exps
- * PADME is validating the technique and extensions are proposed in other labs
- * Despite the A' narrowness of the straggling makes the resonant annihilation competitive wrt to the A'-strahlung in the A' production
- *When included, the positron annihilation lower the existing exclusion limits in selected kinematics $x^2(x|0)$ in visible invisible-decay experiments
- * A dedicated physics program with a positron beam at JLab on thin and thick targets is under study