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Further detailed discussion can be found here: dune-doc-9607-v2.
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Goal

Energy reconstruction of very high energy muons originating from
cosmogenic neutrinos( IceCube ) and very high energy cosmic rays.

Searches for Weakly Interacting Massive Particles(WIMPs) using
neutrino-induced upward-going muons, as done by
Super-Kamiokande collaboration, ( S. Desai et al. ) .

This kind of multimessenger astronomy works at the TeV scale
and are being tested at IceCube( R.Abbasi et al. ) and SK detectors.

DUNE far detector(FD) may also be used to detect high-energy
muons.
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https://science.sciencemag.org/content/361/6398/147
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.70.083523
https://doi.org/10.1016/j.nima.2012.11.081


Muon energy measurement techniques.

Muon range: used for muons with momentum between MeV to
GeV, uses muon track-length that decay into electrons within the
detector volume.

Coulomb Scattering (multiple scattering): used for muon with
momentum between 10’s of MeV to few GeV. Muon is deflected by
Coulomb interaction with nuclei. RMS of the deflections is used as
the predictor - notable experiments ICARUS and MicroBooNE(up
to around 2 GeV).

Magnetic Spectroscopy: Magnetic field is used to deflect the muon
path mainly in the GeV range, the radius of curvature used as a
predictor - notable experiments MINOS and CMS. DUNE FD is
not magnetized.

Energy deposition dependent methods: using characteristics of
electromagnetic showers as predictors in the 100’s of GeV to TeV
range - notable experiments Super-Kamiokande and IceCube.
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Muons stopping power (dune-doc-9607-v2&9694-v1):

At very high energies, energy loss is dominated by radiative
processes that includes bremsstrahlung, pair production and
nuclear interactions.

Muon stopping power : < dEµ/dx > ≈ a + bEµ, where a accounts
for ionozation and b for radiative processes.

→Critical value for
LAr is around 484
GeV or βγ ≈ 4.2 ×
103.
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A showering high-energy muon inside the LArTPC :

10 TeV muon event showing a track and associated showers
developments in LArTPC(Kevin Ingles, dune-doc-9607-v2).

→
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Simulation :

For simulation events are generated with the particle Gun
generator within the Geant4 using the LArSoft toolkit.

Muons are generated and propagated horizontally and lengthwise
of the detector geometry proposed for the DUNE-FD, 10kt single
phase.

1000 events are generated at each energy values : 100, 500, 1000,
5000, 10000, 20000 and 50000 GeV.

The energy deposited through the track is estimated by collecting
the electron on wires from the reconstructed hits and space-point.
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List of parameters :

Here is the list of parameters used in dune-doc-9607-v2, will be
used to estimate the true muon energy from the observable.
Natural logarithm of quantities used to plot histograms on a
convenient scale.

Variables Notation Used

Total energy deposition per event ln∆tot

Average energy deposited on wires ln∆̄
RMS of energy deposited on wires lnσ∆̄

RMS divided by the average ln(σ∆̄/∆̄)
Average energy deposited excluding
MIP wires

noMIP ln∆̄

RMS of energy deposited excluding
MIP wires

noMIP lnσ∆̄

RMS divided by the average exclud-
ing MIP wires

noMIP ln(σ∆̄/∆̄)

Count of electromagnetic showers NShower
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Energy deposition of muon :
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Histograms for 10 TeV muons events in LArTPC, similar
histograms for other energies can be found at Histograms .
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https://home.fnal.gov/~jdsingh/myPlots/index.html


Energy deposition of muons:
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Histograms for 10 TeV muons events in LArTPC.
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Neyman construction :

Used when a value of interest
can not be directly measured.

Uses variables that can be
measured to make an inference
about the value of interest.

Experimental outcomes
simulated for each possible
value of interest.

Confidence interval
constructed for the measured
value for each value of interest.

The sets of confidence intervals
creates a confidence belt.

A measurement made represents a vertical line, the intersection
with the confidence belt forms an interval for the value of interest.
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Confidence intervals estimation :
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Calculated confidence intervals (68.3%) corresponding to the
variable of interest for 10 TeV muons events, for other energies can
be found at Histograms .
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Neyman construction for the parameters of interest:

The confidence belts constructed for the 4 variables of interest for
full track length events at all energies.
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Track length estimation with space points:

Reconstruted spacepoint is an object
made using hits in the three 2D time
vs wire views associated to find 3D
points in LArTPC.

Pandora is used to reconstruct space
points (Eur.Phys.J.C75,439(2015))
and (Eur.Phys.J.C78,82(2018).

PCA is used to estimate the direction
vector that is used to calculate the
equation of line.

Estimated average point and
line-plane intersection points are
represented with red solid circles.
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Intersecting points of the lines with planes is used to estimate the
segment of track(track length) available inside the field cage.
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Reconstructed track from MUSUN sample:
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Isochronous tracks :
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Reconstructed space point and tracks for 10 TeV muon events
propagated perpendicular to the X axis, called isochronous tracks.

They are all at the same X, which means the drifting electrons
arrive at the anode all at the same time, since the association of
hits in different views is ambiguous and that gives the wrong space
points.

We must cut out these events from the analyses or treat them
specially because they are misreconstructed.
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Stopping muons tracks :
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True and reconstructed track length:
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True track length vs reconstruced track length, here true tracks
length are estimated by adding up the trajectory point distances
inside the LArTPC.
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Charge per unit length(dq/dx):
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Logarithm of charges per unit length, length is estimated (left
panel) with reconstructed space-point and adding up the
trajectory point distances(right panel).
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Charge per unit length(dq/dx):
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Logarithm of charges per unit length and its confidence interval
that will be used to get the Neyman confidence belt.
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Future work

Characterization of the performance of the track length estimation
using space points.

Remove outlier space points when getting direction.

Stitch the tracks comes randomly in the time since the space point
will be displaced if the time is not known. Or, use the PD system
to get time.

Systematic uncertainty evaluation. (muon radiation modeling,
electronics saturation, recombination modeling in dense showers
and electron lifetime).

Energy resolution as a function of muon path length estimation.

Differentiating upward-going muons from downward-going muons
using shower shapes.
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Future work : Stitching

Stitching needs to be done because
tracks cross between drift volumes
with different directions of the E field.

They cross anodes and cathodes in
the FD.

If the time is not known but the E
field is the same everywhere along a
track, then it just appears displaced
along the E field.

If the track crosses an anode or
cathode and the time is unknown,
then the pieces of the track in
different volumes appear displaced in
opposite directions and the track
appears broken.

Steven Green
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https://indico.fnal.gov/event/20102/contributions/55472/attachments/34582/42269/Stitching_Green_2019_3_7.pdf


Thank you for your attention.

Any questions ?
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