The Higgs Potential at future colliders

Michele Selvaggi (CERN)

Snowmass `20 - 06/10/2020

Self coupling @ HL-LHC measurements

• At the (HL-)LHC the self-coupling can be measured via both:

9 00000

g 0000

t, b

- Higgs pair production single Higgs production
- Indirect constraint from ggH and ttH:
 - $\delta \kappa_{\lambda} \approx 100\%$ (exclusive) • $\delta \kappa_{\lambda} \approx 200\%$ (global)
- Direct measurement:
 - $\delta \kappa_{\lambda} \approx 50\%$

combination HL-LHC

Self-coupling at circular e⁺e⁻ colliders

- coupling is measured via single Higgs production (FCC-ee)
- Precise ZH cross-section measurement at various energies can resolve λ_3 , λ_{VVHH}
- FCC-ee gives the best indirect measurement:
 - $\delta \kappa_{\lambda} = 33\%$ (2 IPs) • $\delta \kappa_{\lambda} = 24\%$ (4 IPs)

• At low energy $\sqrt{s} < 500$ GeV the self-

 g_Z, λ_3

 λ_3 , λ_{VVHH}

ider	HL-LHC	ILC_{250}	CLIC_{380}	$CEPC_{240}$	$\text{FCC-ee}_{240 \rightarrow 365}$
ni (ab^{-1})	3	2	1	5.6	5+0.2+1.5
rs	10	11.5	8	7	3+1+4
н (%)	50.	- / 49 .	- / 50 .	- / 50 .	44./33. 2IP $27./24.$ 4IP

global fit, with/without HL-LHC input

Self-coupling at linear e⁺e⁻ colliders

ILC - I TeV

- At high energies $\sqrt{s} > 500$ GeV selfcoupling is measured via double Higgs production (ZHH and vvHH)
- on λ_3
- Measured in *ll*bbbb (ZHH) and vvbbbb, vvbbWW (vvHH)
- ILC and CLIC best direct measurement at e+e-:
 - $\delta \kappa_{\lambda} = 10\%$ (ILC₁₀₀₀)
 - $\delta \kappa_{\lambda} = 9\%$ (CLIC₃₀₀₀)

Collider	ILC_{500}	ILC_{1000}	CLIC
$g_{\mathrm{HHH}}~(\%)$	27.	10.	9.

Cross-section at various energies depends

Self-coupling at the FCC-hh

- best precision on λ_3
- Measured in:

 - Combined precision:
 - 3.5-7% for SM (3% stat. only)
 - **10-20%** for $\lambda_3 = 1.5^* \lambda_3^{SM}$ •

2004.03505 [hep-ph]

parameterisation	scenario I	scenario II	scena
b-jet ID eff.	82-65%	80-63%	78-6
b-jet c mistag	15-3%	15-3%	15-
b-jet l mistag	1-0.1%	1 - 0.1%	1-0.
au-jet ID eff	80-70%	78-67%	75-6
τ -jet mistag (jet)	2-1%	2-1%	2-1
τ -jet mistag (ele)	0.1-0.04%	0.1- $0.04%$	0.1-0
γ ID eff.	90	90	9
jet $\rightarrow \gamma$ eff.	0.1	0.2	0.
$m_{\gamma\gamma}$ resolution [GeV]	1.2	1.8	2.
m_{bb} resolution [GeV]	10	15	2

At 100 TeV pp, Higgs pair production gives

• bbyy (golden channel), $bb\tau\tau$, bbbb, bbZZ(4I)

Self-coupling at the Muon Collider

• At 10-30 TeV muon collider, the VBF pair production dominates (~ CLIC)

- vvbbbb final state (4jets + ME)
- best precision ~2% (stat only) ?
- More studies needed, parton level only for now

Muon collider could potentially provide the

Open questions:

- For simplicity, most of the benchmarking on future colliders capabilities in made assuming λ_3^{SM} • (allows for easy comparison), or varying λ_3 alone.
 - left to theorists?
 - how about indirect measurements? (e.g single Higgs production or W/Z mass)
 - how approach global fits as a community (pheno/exp)

- Various proposed future colliders present different levels of maturity
 - How do we deal with detector effects (Pile-up, Beam Induced Background)?
 - Treatment of dominant systematic uncertainties (theory vs. exp)
 - How do we estimate uncertainties (performance/systematics) on future colliders?

• desirable to investigate use of global - (SM)EFT fit from exp. community, or this exercise can be

• Can be indirectly parameterised if full-sim is not available (very different environment)?

Open questions:

- precision? e.g
 - at proton collider precise measurement of λ_3 requires y_t (itself requiring g_{ttZ})?
 - at lepton (and proton) colliders need both measurements of λ_{VVHH} and λ_3

- How about λ_{VVHH} and λ_4 ?
 - missing exp. efforts so far (see backup for pheno. work)

What is the interplay between auxiliary measurements at various colliders to allow for best self- coupling

Open questions

- A strongly first-order EWPT requires new physics coupling to the Higgs.
 - What does this imply generically for **di-Higgs rates**?
 - Does it imply a minimum deviation pattern in Higgs couplings?
 - How does the reach of Higgs coupling measurements compare to other direct and indirect probes?
- What can we learn about the history of the universe from collider measurements ?

BACKUP

- Fix the two parameters (μ^2, λ) with two observables (v, m_h) .
- **Predictions:**

The Standard Model Higgs Potential

$$\lambda \, (H^{\dagger}H)^2$$

$$(\lambda v^2) h^2 + \lambda v h^3 + \frac{\lambda}{4} h^4 + \lambda_3 v h^3 + \frac{\lambda_4}{4} h^4$$

$$\lambda_4 = \frac{m_h^2}{2v^2}$$

Testing the SM Higgs Potential

• Measure di-Higgs (tri-Higgs?) production to probe λ_3 (λ_4):

[talk by M. Selvaggi]

 Must be part of a global fit to Higgs couplings, requires high SM precision! [e.g. Di Vita, Grojean, Riembau, Vantalon 1704.01953]

[[]de Blas et al. 1905.03764]

Testing the SM Higgs Potential

• Look for NLO effects of λ_3 in single Higgs production:

[McCullough 1312.3322; Maltoni, Pagani, Shivaji, Zhao 1709.08649]

Testing the SM Higgs Potential

• Look for effects of λ_3 in precision electroweak observables:

[Degrassi, Fedele, Giardino 1702.01737; Kribs, Maier, Rzehak, Spannowsky, Waite 1702.07678]

Higgs Potential Beyond the SM

• Note: c_H also modifies hhVV couplings!

• Heavy new physics can yield effective operators that modify the potential. [e.g. Giudice, Grojean, Pomarol, Rattazzi hep-ph/0703164; Brivio, Trott 1706.08945]

> $\mathcal{L} \supset \frac{c_H}{2\Lambda^2} [\partial_{\mu} (H^{\dagger} H)]^2 - \frac{c_6 \lambda}{\Lambda^2} (H^{\dagger} H)^3$ $\frac{\lambda_3}{\lambda_2^{SM}} = 1 + c_6 \frac{v^2}{\Lambda^2} - \frac{3}{2} c_H \frac{v^2}{\Lambda^2}$ $\frac{\lambda_4}{\lambda^{SM}} = 1 + \left(6c_6 - \frac{25}{3}c_H\right)\frac{v^2}{\Lambda^2}$ e^+

Higgs Potential Beyond the SM

Higgs mixing with other fields or new sources of EWSB can too.

e.g.

Model	$\max\{\frac{\lambda_3}{\lambda_3^{SM}}-1\}$
Mixed-in Singlet	-18%
Composite Higgs	$\mathcal{O}(10\%)$
MSSM	-15%
NMSSM	-25

[Gupta, Rzehak, Wells 1305.6397]

Higgs Potential in the Early Universe

• Thermal effective potential:

V_{eff}

Electroweak Phase Transition

A strong first-order EWPT can allow baryogenesis or make gravitational waves! [e.g. Shaposhnikov NPB287, 575; Kamionkowski, Kosowsky, Turner astro-ph/9310044; Cohen, Kaplan, Nelson hep-ph/9302210; Grojean, Servant hep-ph/0607107, LOIs by Carena et al.]

• SM: the electroweak phase transition is a smooth crossover. [Kajantie et al. hep-lat/9510020]

• BSM: the EWPT can be strongly first order if new physics couples to the Higgs.

A First Order EWPT

- Requires new physics that couples to the Higgs.
- SM-charged new physics ⇒ modified Higgs production and decay rates.
 e.g. gluon fusion rates rule out a SFO EWPT from light stops in the MSSM [Cohen, DM, Pierce 1203.2924; Curtin, Jaiswal, Meade 1203.2932]
- SM-singlet new physics main effect can be to alter the self-coupling λ_3 .
 - Higgs-singlet portal: $\lambda_{HS} S^2 H^{\dagger} H$
 - SMEFT operator:

[Noble, Perelstein 0711.3018; Profumo, Ramsey-Musolf, Wainwright, Winslow 1407.5342; Curtin, Meade, Yu 1409.0005]

- $\frac{c_6}{\Lambda^2} (H^{\dagger} H)^3$
- [Grojean, Servant, Wells hep-ph/0407019; Noble, Perelstein 0711.3018]

A First Order EWPT with Singlet

• For the Higgs-singlet portal: λ_{I}

[Curtin, Meade, Yu 1409.0005; Kotwal, Ramsey-Musolf, No, Winslow 1605.06123; Huang, Long, Wang 1608.06619; <u>Beniwal, Lewicki, Wells, White, Williams 1702.06124</u>]

$\lambda_{HS} \, S^2 H^{\dagger} H$

[KC Green, gunshowcomic.com]

(Higgs) Potential Questions

- What can we learn about new physics from Higgs couplings?
- A strongly first-order EWPT requires new physics coupling to the Higgs:
 - What does this imply generically for di-Higgs rates?
 - Does it imply a minimum deviation pattern in Higgs couplings?
 - How does the reach of Higgs coupling measurements compare to other direct and indirect probes?

Higgs Potential Beyond the SM

- Note 1: extractions of λ_3 are sensitive to other deviations in Higgs couplings as well as uncertainties in SM parameters.
- Note 2: some BSM scenarios can even interfere with the full realization of electroweak symmetry at high temperature. [e.g. Meade, Ramani 1807.07578; Baldes, Servant 1807.08770]
- Note 3: in Higgs-singlet scenarios with a first-order EWPT, finding the new (mostly) singlet scalar might be easier than measuring Higgs rates.

$$pp \to h_2^{(*)} \to hh$$

23

Summary future λ_3 measurements LHC

- O(10)-O(2)
- Could detect large <u>anomalous</u> coupling
- HL-LHC 2)
 - O(1)
 - Potential for <u>evidence</u> (3σ precision)
- CEPC/FCC-ee : single H couplings + indirect measurement 3)
 - Potential for <u>observation</u> (5 σ precision)
 - $\delta g_{ttZ} \sim 1\%$, allows for $\delta y_t \sim 1\%$ @FCC-hh
- ILC/CLIC : ~ 10 % precision 4)
- FCC-hh : precision measurement: 3.5-7.8% 5)
- Muon Collider: precision 2-3% (stat only)? 6)

Global fit in indirect ee measurements

collider

CEPC 240

FCC-ee 240

FCC-ee 240/365

FCC-ee (4IP)

ILC 250

ILC 250/500

ILC 250/500/1000

CLIC 380

CLIC 380/1500

CLIC 380/1500/3000

<u>1910.00012</u> [hep-ph]

1-parameter	full SMEFT
18%	-
21%	-
21%	44%
15%	27%
36%	-
32%	58%
29%	52%
117%	-
72%	-
49%	-

Higgs Self-coupling and constraints on models with Ist order EWPT

- Can be achieved with extension of SM + singlet

Direct detection of extra Higgs states

• Strong Ist order EWPT needed to explain large observed baryon asymmetry in our universe

Parameter space scan for a singlet model extension of the Standard Model. The points indicate a first order phase transition.

$V_{L}V_{L} \rightarrow HH$

[1611.03860]

With c_v from FCC-ee, $\delta c_{2v} < 1\%$

HHH→bbbbbb

<u>1909.09166</u> [hep-ph]

 $\chi^2 = \sum_{qr \in \text{pairings } I} (M_{qr} - m_h^2)^2$

	$hhh \rightarrow \text{final state}$	$\mathrm{BR}\ (\%)$	$N_{20{ m ab}^{-1}}$
	$(bar{b})(bar{b})(bar{b})$	19.21	22207
jnificance ~ 1.70	$(bar{b})(bar{b})(WW_{1\ell})$	7.20	8328
∈ [-1.7, 13.3]	$(bar{b})(bar{b})(auar{ au})$	6.31	$7297 \rightarrow$ Fuks, Kim, Lee
	$(bar{b})(auar{ au})(WW_{1\ell})$	1.58	1824 Fuks, Kim, Lee, 1
	$(bar{b})(bar{b})(WW_{2\ell})$	0.98	1128
	$(b\bar{b})(WW_{1\ell})(WW_{1\ell})$	0.90	$1041 \rightarrow$ Kilian, Sun, Yar
	$(bar{b})(auar{ au})(auar{ au})$	0.69	799
	$(bar{b})(bar{b})(\gamma\gamma)$	0.23	$263 \rightarrow \underline{AP}$, Sakurai, 18

Quartic bounds from di-Higgs

 $\kappa_4 \in [-2.3, 4.3]$ at 68%CL

1811.12366 [hep-ph]