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Outline
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I.Motivations for Machine Learning 
II.Path to the Future of AI in HEP
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Motivations for Using  
Machine Learning 

 in High Energy Physics
and elsewhere ...

8/27/20
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Machine Learning in Industry

!4

https://www.nvidia.com/en-us/deep-learning-ai/ 

http://www.shivonzilis.com/machineintelligence 

● Prominent field in industry nowadays 
● Lots of data, lots of applications, lots of 

potential use cases, lots of money 
➔ Knowing machine learning can open 

significantly career horizons

8/27/20
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Learning to Control

!5

Mastering the game of Go with deep neural networks and tree search, 
https://doi.org/10.1038/nature16961

Learning to Walk via Deep Reinforcement Learning 
https://arxiv.org/abs/1812.11103

Modern machine learning boosts control technologies. 
AI, gaming, robotic, self-driving vehicle, etc.

https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1812.11103
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Learning from Complexity

!6

Machine learning model can extract information from 
complex dataset. 

More classical algorithm counter part may 
 take years of development. 

8/27/20
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Learn Physics

!7

Machine Learning can help understand Physics.

P. Komiske, E. Metodiev, J. Thaler, https://arxiv.org/abs/1810.05165 

8/27/20

https://arxiv.org/abs/1810.05165
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Use Physics

!8

Let me model include Physics principles to 
master convergence

A. Sanchez-Gonzalez, V. Bapst, K. Cranmer, P. Battaglia https://arxiv.org/abs/1909.12790 

8/27/20

https://arxiv.org/abs/1909.12790
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The Computing Cost of Science

!9

Ever growing needs for computing resource 
Slowdown of classical architecture, growth of GPU architecture

https://indico.cern.ch/event/822126/contributions/3500169/ 

8/27/20
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Operation Vectorization

!10

ANN ≡ matrix operations  ≡ parallelizable

Computation of prediction from artificial neural network model can be 
vectorized to a large extend.

8/27/20
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Hyper-Fast Prediction

!11

Synthesizing FPGA firmware from trained ANN 
https://hls-fpga-machine-learning.github.io/hls4ml/  

J. Duarte et al.https://arxiv.org/abs/1804.06913 

Prediction from artificial neural network model can be 
done on FPGA, GPU, TPU, ...

8/27/20
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Low Power Prediction

!12

Neuromorphic hardware dedicated to spiking neural networks. 
Low power consumption by design.

Slide C. Schumanhttps://indico.fnal.gov/event/13497/contribution/0 

8/27/20
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The Future of AI in 
High Energy Physics

as I see it ...

8/27/20



AI/ML in HEP, J-R Vlimant, Snowmass CPM

Unrolling Success Stories

!14

Machine learning already deployed in many areas of HEP data analysis 
• Trigger decisions 
• Signal classification 
• Signal region categorization 
• Jet tagging, particle identification, classification within reconstruction 
• Energy regression 
• … 

“Classical” MVA (Boosted decision trees, support vector machine, artificial neural 
network) mostly used.  
Increasing usage of deeper/complex artificial neural network (CNN, RNN, …) 

Deep learning R&D to go beyond the performance and these type applications 
➡Generative models 
➡Reconstruction  
➡Anomaly detection 
➡Theory Inference 
➡Control technology 
➡…
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Possible Utilizations

!15

Accuracy Speed

Interpretable

➔ Fast surrogate models (trigger, simulation, etc) ; even better if more accurate.  
➔ More accurate than existing algorithms (tagging, regression, etc) ; even better if faster. 
➔ Model performing otherwise impossible tasks (operations, etc)

8/27/20
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AI in HEP

!16

LHC Computing Grid  
200k cores pledge to 
CMS over ~100 sites

CMS Detector 
1PB/s

CMS L1 & High-
Level Triggers 

50k cores, 1kHz

Large Hadron Collider 
40 MHz of collision

CERN Tier-0 
 Computing Center 

20k cores

CERN Tier-0/Tier-1 
 Tape Storage 
200PB total

LHC  Grid  
Remote Access  
to 100PB of data

Rare Signal 
Measurement 
~1 out of 106  

AI

AI

AI

AI

AI

AI

Role of AI: accelerator control, data acquisition, 
event triggering, anomaly detection, new physics 
scouting, event reconstruction, event generation, 
detector simulation, LHC grid control, analytics, signal 
extraction, likelihood free inference, background 
rejection, new physics searches, ...

AI AI

8/27/20
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Growing Literature 

!17

• Community-based up to date listing of references 
https://iml-wg.github.io/HEPML-LivingReview/ (please update and contribute) 

• Impossible to cover and give credits to all aspects of AI-4-HEP in this talks . 
• Below are highlights on specific data handling related applications. 
• Think that something major is missing ? Let me know and I’ll amend.

https://inspirehep.net/literature?q=machine learning or deep learning 

https://iml-wg.github.io/HEPML-LivingReview/
https://inspirehep.net/literature?q=machine%20learning%20or%20deep%20learning
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Producing the Data

!18

Opportunities in Machine Learning for Particle Accelerators https://arxiv.org/abs/1811.03172 
Machine learning for design optimization of storage ring nonlinear dynamics https://arxiv.org/abs/1910.14220 
Advanced Control Methods for Particle Accelerators (ACM4PA) 2019 Workshop Report https://arxiv.org/abs/2001.05461 
Machine learning for beam dynamics studies at the CERN Large Hadron Collider https://arxiv.org/abs/2009.08109 
…

Advanced Control Methods for Particle Accelerators 
https://arxiv.org/abs/2001.05461 

• Machine learning can be used to 
tune devices, control beams, 
perform analysis on accelerator 
parameters, etc. 

• Already successfully deployed 
on accelerator facilities. 

• More promising R&D to 
increase beam time.

https://arxiv.org/abs/1811.03172
https://arxiv.org/abs/1910.14220
https://arxiv.org/abs/2001.05461
https://arxiv.org/abs/2009.08109
https://arxiv.org/abs/2001.05461
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Acquiring Data

!19

• Machine learning since long 
deployed in the trigger for 
selected signatures. 

• Further potential for background 
trigger rate reduction. 

• Emerging opportunity for 
triggering on unknown 
signatures. 

• More promising R&D and 
experiment adoption.

Use of variational auto-encoders directly on data to marginalize outlier 
events, for anomalous event hotline operation. 

https://doi.org/10.1007/JHEP05(2019)036 

https://doi.org/10.1007/JHEP05(2019)036
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Compressing Data

!20

Use of auto-encoder model  
http://lup.lub.lu.se/student-papers/record/9004751 

• Rich literature on data 
compression of image with 
neural network. 

• Make use of abstract semantic 
space for image compression. 

• Image compression can suffer 
some loss of resolution. 

• Saving on disk/tape cost. 
Potential in scouting data 
analysis. 

• R&D needed to reach the 
necessary level of fidelity.

http://lup.lub.lu.se/student-papers/record/9004751
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Cleaning Data

!21

Towards automation of data quality system for CERN CMS experiment https://doi.org/10.1088/1742-6596/898/9/092041  
LHCb data quality monitoring http://dx.doi.org/10.1088/1742-6596/898/9/092027  
Detector monitoring with artificial neural networks at the CMS experiment at the CERN Large Hadron Collider https://arxiv.org/abs/1808.00911  
Anomaly detection using Deep Autoencoders for the assessment of the quality of the data acquired by the CMS experiment https://doi.org/10.1051/
epjconf/201921406008  
…

• Data quality is a person power 
intensive task, and crucial for 
swift delivery of Physics 

• Machine learning can help with 
automation. 

• Learning from operators, 
reducing workload. 

• Continued R&D and experiment 
adoption.

Use of auto-encoders to isolate anomalous monitoring histograms 
https://doi.org/10.1007/s41781-018-0020-1 

https://doi.org/10.1088/1742-6596/898/9/092041
http://dx.doi.org/10.1088/1742-6596/898/9/092027
https://arxiv.org/abs/1808.00911
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1051/epjconf/201921406008
https://doi.org/10.1007/s41781-018-0020-1
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Managing Data

!22

• The LHC-grid is key to success 
of the LHC experiments. 

• Complex ecosystem with 
dedicated operation teams. 

• Person power demanding, and 
inefficient in some corner of the 
phase space. 

• Potential for AI-aided operation. 
• Lots of modeling and control 

challenges. 
• R&D to increase operation 

efficiency.

http://cds.cern.ch/record/2709338/ 
https://operational-intelligence.web.cern.ch 

Caching suggestions using Reinforcement Learning 
LOD 2020, in proceedings

http://cds.cern.ch/record/2709338/
https://operational-intelligence.web.cern.ch
https://lod2020.icas.xyz/program/
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Reconstructing Data

!23

• Event reconstruction is pattern 
recognition to a large extend. 
Advanced machine learning 
techniques can help. 

• Learn from the simulation, and/or 
data. 

• Learn from existing “slow 
reconstruction” or simulation 
ground truth. 

• Automatically adapt algorithm to 
new detector design. 

• Image base methods evolving 
towards graph-based methods. 

• Accelerating R&D to exploit full 
potential.Much more relevant work going on. 

https://iml-wg.github.io/HEPML-LivingReview/ 

Learning graphs from sets, applied to vertexing 
https://arxiv.org/abs/2002.08772 

GNN applied to charged particle tracking 
https://arxiv.org/abs/2007.00149 

https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/2002.08772
https://arxiv.org/abs/2007.00149
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Simulating Data

!24

• Fully detailed simulation is 
computing intensive. 

• Fast and approximate simulators 
already in operation. 

• Applicable at many levels : 
sampling, generator, detector 
model, analysis variable, etc 

• Generative models can provide 
multiple 1000x speed-up. 

• Careful study of statistical power 
of learned models over training 
samples. 

• Many R&D, experiment adoption 
starting.

Much more relevant work going on. 
https://iml-wg.github.io/HEPML-LivingReview/ 

Generative Adversarial Networks for LHCb Fast Simulation 
https://arxiv.org/abs/2003.09762

https://iml-wg.github.io/HEPML-LivingReview/
https://arxiv.org/abs/2003.09762
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Calibrating Data

!25

• Energy regression is the most 
obvious use case. 

• Learning calibrating models from 
simulation and data. 

• Parametrization of scale factors 
using neural networks. 

• Reducing data/simulation 
dependency using domain 
adaptation. 

• Continued R&D

A deep neural network for simultaneous estimation of b jet energy and resolution

https://arxiv.org/abs/1912.06046 

Much more relevant work going on. 
https://iml-wg.github.io/HEPML-LivingReview/ 

https://arxiv.org/abs/1912.06046
https://iml-wg.github.io/HEPML-LivingReview/
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Analyzing Data

!26

• Machine learning has long 
infiltrated analysis for signal/bkg 
classification. 

• Increasing number of analysis 
with more complex DNN. 

• Application to signal 
categorization, bkg modelling, 
kinematics reconstruction, decay 
product assignment, object 
identification, … 

• Breadth of new model agnostic 
methods for NP searches. 

• Continued R&D and experiment 
adoption initiated.

Use of masked autoregressive density estimator with normalizing flow 
as model-agnostic signal enhancement mechanism. 

https://doi.org/10.1103/PhysRevD.101.075042 

Much more relevant work going on. 
https://iml-wg.github.io/HEPML-LivingReview/ 

https://doi.org/10.1103/PhysRevD.101.075042
https://iml-wg.github.io/HEPML-LivingReview/
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Theory Behind the Data

!27

• Hypothesis testing is the core of 
HEP analysis. 

• Intractable likelihood hinders 
solving the inverse problem. 

• Going beyond the standard 
approach using machine learning 
and additional information from 
the simulator. 

• More precise evaluation of the 
priors on theory's parameters. 

• May involve probabilistic 
programming instrumentation of 
HEP simulator. 

• R&D to bring this in the 
experiment.

The frontiers of simulation-based inference 
https://arxiv.org/abs/1911.01429 

https://github.com/probprog/pyprob

Constraining EFT with ML 
https://arxiv.org/abs/1805.00013 

https://arxiv.org/abs/1911.01429
https://github.com/probprog/pyprob
https://arxiv.org/abs/1805.00013
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Summary

!28

➡Deep Learning (deep artificial neural networks) is 
dominating the field of machine learning nowadays 

➡Deep learning can help in Science 
➡Several deep learning solutions already deployed in HEP 
➡Rapid growth of machine learning applications in HEP 

lots of details and applications left out in this talk 
➡Turning proofs of concept into production (too) slowly 
➡Exciting time ahead exploiting further the potential of AI 

8/27/20
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What Now

!29

➡Machine learning education in HEP : complement, not 
supplement programming courses. 
➡Recognition of dual DS-HEP profile in academia : keep the talents 
in the field. 
➡Model training infrastructure: beyond institutional GPU-clusters. 
➡Model deployment infrastructure : software/firmware integration, 
more than hardware planning. 
➡Cross-experiment development platform : sharable dataset, 
sharable dataset, sharable dataset.
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Extra material

8/27/20
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Supervised Learning

!31

● Given a dataset of samples, a subset of features is qualified as 
target, and the rest as input 

● Find a mapping from input to target 
● The mapping should generalize to any extension of the given 

dataset, provided it is generated from the same mechanism 
 
 
 
 
 

● Finite set of target values :  
➔ Classification 

● Target is a continuous variable :  
➔ Regression

dataset≡ {( xi , yi)}i
find function f s.t. f (xi)= yi

8/27/20
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Unsupervised Learning

!32

● Given a dataset of samples, but there is no subset of feature 
that one would like to predict 

● Find mapping of the samples to a lower dimension manifold 
● The mapping should generalize to any extension of the given 

dataset, provided it is generated from the same mechanism 
 
 
 
 

● Manifold is a finite set  
➔ Clusterization 

● Manifold is a lower dimension manifold :  
➔ Dimensionality reduction,  

density estimator

dataset≡ {(xi)}i
find f s.t. f (xi)= pi

8/27/20
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Reinforcement Learning

!33

● Given an environment with multiple states, given a 
reward upon action being taken over a state 

● Find an action policy to drive the environment toward 
maximum cumulative reward 
 
 
 
 
 

st+ 1= Env(st , at)
rt= Rew (st , at)

π (a∣ s)= P (At= a∣S t= s)
find π s.t.∑

t
r t is maximum

8/27/20
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From RAW to High Level Features

!34

From digital signal, to local hits, to a sequence of particles, jets, and high-level features. 
Complex and computing intensive task that could find a match in ML application.

Detector 
Data

Detector Data Local reconstruction Jet ClusteringParticle representation High level features

Event Processing

Dimensionality reduction

Globalization of information
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Reconstruction

!35

Mostly pattern recognition tasks with regressions and classifications 
Development on multiple tasks: 

• Local energy reconstruction 
• Jet reconstruction 
• Particle (flow) reconstruction 
• Tracking 
• Vertexing 
• … 

Composite reconstruction and end-2-end approaches. 
 
Graph neural networks are emerging as overarching solutions for reconstruction tasks
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Simulating Collisions

!36

Event Generator: compute predictions of the standard models to several orders 
of expansion in coupling constants (LO, NLO, NNLO, ...) using proton density 
functions.

Hadronization: phenomenological model of the evolution of hadrons under the 
effect of QCD.

Material simulator: transports all particles throughout meters of detector, using 
high resolution geometrical description of the materials.

Electronic emulator: converts simulated energy deposits in sensitive material, 
into the expected electronic signal, including noise from the detector.

Madgraph, 
Pythia, Sherpa, 
...

Pythia, ...

GEANT 4, 
GEANT V

Homegrown 
software

Non-differentiable sequence of complex simulators of the signal expected from the detectors.  
Computing intensive task, exceeding budget for reconstruction.
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Generative Models in HEP

!37

Enormous potential gain in computing performance (x thousands) 
Extensive R&D effort on-going 

• Better PDF 
• Faster phase space integration 
• Matrix element surrogates 
• Particle shower energy deposit simulation 
• Analysis-level sample production 
• Learning the detector transfer function 
• Reconstructed-particle-level fast simulation 
• … 

Extension of such models 
• Unfolding mechanism 
• Anomaly detection 
• Background subtraction 
• … 

Generative adversarial network (GAN),Variational Auto-Encoder (VAE) and 
hybrid solutions taking the best of both methods

Diagram A. Butter
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Taking Control of Apparatus

!38

Multiple components of HEP data pipe-line can be operated with AI 
• Accelerators 
• Detectors 
• DAQ/trigger 
• Internet networking 
• Data management 
• Computing facilities 
• … 

Reinforcement learning for learning policies is challenging to put in 
practice (environment simulation / lots of data required, …). 
Alternative approaches using supervised learning.  
   
Potential gain in operation cost, and utilization efficiency.


