Higgs properties projections @ future e+e-

arXiv:1903.01629 1708.09079 1708.08912 ESG "Higgs @ FC" arXiv:1905.03974

Junping Tian (U. Tokyo)

Snowmass Community Planning Meeting "Higgs factories" session, October 6, 2020

proposals of future e+e- colliders

	√s	beam polarisation	∫Ldt (baseline)	R&D phase
ILC	0.1 - 1 TeV	e-: 80% e+: 30% (20%)	2 ab ⁻¹ @ 250 GeV 0.2 ab ⁻¹ @ 350 GeV 4 ab-1 @ 500 GeV 8 ab-1 @ 1 TeV	TDR 2013
CLIC	0.35 - 3 TeV	e-: (80%) e+: 0%	1 ab ⁻¹ @ 380 GeV 2.5 ab ⁻¹ @ 1.5 TeV 5 ab ⁻¹ @ 3 TeV	CDR 2012
CEPC	90 - 240 GeV	e-: 0% e+: 0%	5.6 ab ⁻¹ @ 250 GeV 16 ab ⁻¹ @ M _Z 2.6 ab ⁻¹ @ 2M _W	CDR 2018
FCC-ee	90 - 350 GeV	e-: 0% e+: 0%	150 ab ⁻¹ @ Mz 10 ab ⁻¹ @ 2Mw 5 ab ⁻¹ @ 250 GeV 1.7 ab ⁻¹ @ 365 GeV	CDR 2018

common: Higgs factory with O(106) Higgs events

differ in energy reach, luminosity, polarization, project readiness

statistics vs S/B: example on H \rightarrow bb discovery

LHC (super Higgs factory #10⁸)

e+e- (Higgs factory #10⁶)

5.2σ

[Ogawa, PhD Thesis (Sokendai)]

goal of Higgs precision measurements @ e+e-

✓ to see new physics effects from deviation w.r.t. SM
 ⇒ need 1% or below sensitivity for m_{BSM}~1TeV
 ✓ to identify the underling BSM model from deviation pattern
 ⇒ need meas. as model-independent as possible

complementarity: direct NP search & precision Higgs coup. $0 < x_t < \sqrt{6}$ 50 $\delta \kappa_b / \%$ currently excluded by LHC searches 40 20.0 expected exclusion by **HL-LHC** searches 10.0 30 tanβ 5.0 20 2.0 **MSSM** with b-τ unification 1.0 10 0.5 0 2 0.5 4 M_{Φ} / TeV

[Wells, Zhang, arXiv:1711.04774]

Higgs productions at e+e-

• two apparent thresholds: $\sqrt{s} \sim 250$ GeV for ZH, ~ 500 GeV for ZHH & ttH • + another threshold for t t-bar, important for Higgs sector as well

Highlight a few measurements @ e+e-

caution: bias in selection

- ▶ m_H, CP
- ▶ OZH
- ▶ $Br(H \rightarrow bb/cc/gg)$
- ▶ Br(H→Invisible / Exotic)
- ▶ total width $\Gamma_{\rm H}$
- Higgs self-coupling

note the important synergy with LHC on $BR(H \rightarrow \gamma \gamma / \gamma Z / \mu \mu)$

unless stated, most features are common for e+e-

recoil mass technique: m_H & inclusive σ_{ZH}

 $M_X^2 = \left(p_{CM} - \left(p_{\mu^+} + p_{\mu^-}\right)\right)^2$

o well defined initial states at e+e o Higgs is tagged without looking into H decay
 o inclusive cross section of e+e- → ZH

key to determining absolute Higgs couplings

[ESG]	$\Delta m_{\rm H}$ / MeV	δσ _{ZH}	
CEPC	5.9	0.5%	
FCC-ee240	11	0.5%	
ILC250	14	L:1.1%; R:1.1%	
CLIC380	78 (23)	L:1.5%; R:1.8%	

[[]Yan et al, arXiv:1604.07524]

Higgs decays to invisible or exotic

• recoil technique allows Higgs to be fully reconstructed even if it decays invisibly

[[]Liu, Wang, Zhang, arXiv:1612.09284]

BR(h→Exotics)

Higgs decays to bb, cc and gg

- clean environment at e+eallows excellent b- and ctagging performance
- **o** b-tag eff. typically > 80%
- **o** c-tag eff. typically > 50%
- **O** H \rightarrow bb/cc/gg separation

[ILD IDR, arXiv:2003.0116]

 $e+e- \rightarrow ZH$, $H \rightarrow 2$ -jet: b-likeness vs c-likeness

[Ono, et. al, Euro. Phys. J. C73, 2343]

differential meas.: Higgs CP & anomalous couplings

<mark>Ο through H→τ+τ-</mark> (or ttH)

$$\mathscr{L}_{Hff} = -\frac{m_f}{v} H\bar{f}(\cos \Phi_{CP} + i\gamma^5 \sin \Phi_{CP}) f_{(CP-odd)}$$

$$\Delta \Phi_{CP} \sim 4.3^{\circ} \qquad \text{[Jeans, Wilson, 1804.01241]}$$

CP sensitive observable ($\Delta \phi$): transverse spin correlation of two τ

differential meas.: Higgs CP & anomalous couplings

angle between Zh production plane & Z decay plane

Higgs total width Γ_H (4 MeV in SM)

• too small to be determined directly through line-shape ($\sigma_D \sim O(500)$ MeV)

 \circ unique method enabled by meas. of inclusive σ_{ZH} @ e+e-

- 1. extraction of absolute HZZ coupling (given *a theory formalism*)
- 2. computation of partial width $\Gamma(H \rightarrow ZZ^*)$
- 3. with meas. of BR(H \rightarrow ZZ*), total width is determined as

$$\Gamma_H = \frac{\Gamma(H \to ZZ^*)}{\text{BR}(H \to ZZ^*)}$$

(similar for $H \rightarrow WW^*$)

Collider	$\delta\Gamma_H$ [%] from Ref.	Extraction technique standalone result	$\delta\Gamma_H$ [%] kappa-3 fit
ILC ₂₅₀	2.3	EFT fit [3,4]	2.2
ILC ₅₀₀	1.6	EFT fit [3,4,14]	1.1
ILC ₁₀₀₀	1.4	EFT fit [4]	1.0
CLIC ₃₈₀	4.7	κ-framework [98]	2.5
CLIC ₁₅₀₀	2.6	κ-framework [98]	1.7
CLIC ₃₀₀₀	2.5	κ-framework [98]	1.6
CEPC	2.8	κ-framework [103, 104]	1.7
FCC-ee ₂₄₀	2.7	κ-framework [1]	1.8
FCC-ee ₃₆₅	1.3	κ -framework [1]	1.1

[ESG]

$$\delta\Gamma_H \sim 1 - 2\%$$

tricky due to Step 1

From observables to couplings - Global Fit

o kappa formalism

useful to quantify the sensitivity to new physics effect from single measurement; but may miss important relations

eg.
$$\mathscr{L} = (1 + \eta_Z) \frac{m_Z^2}{\nu} H Z^{\mu} Z_{\mu} + \zeta_Z \frac{H}{2\nu} Z^{\mu\nu} Z_{\mu\nu}$$

(new Lorentz structure)

 $\delta\sigma(e^+e^- \rightarrow ZH) = 2\eta_Z + 5.5\zeta_Z$ can't be both represented $\delta\Gamma(H \rightarrow ZZ^*) = 2\eta_Z - 0.5\zeta_Z$ by a single κ_Z

o SM Effective Field Theory formalism

$$\mathscr{L} = \mathscr{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^{d_i - 4}} O_i^{(d_i)}$$

17 D-6 ops related to Higgs can be determined simultaneously at e+e-

- represent most general BSM effects
- respect SM gauges symmetries

[Barklow et al, 1708.09079;1708.08912]

expected Higgs coupling precisions @ future e+e-

[global SMEFT fits by ESG]

global perspective for Higgs meas. @ future e+e-

- o the same new physics that modifies Higgs properties may show somewhere else as well
 - $\triangleright\,$ combined probe with EWPO, e+e- $\rightarrow\,$ WW / 2-fermion
- o great synergies with (HL-)LHC measurements
 - Higgs rare decays; Top-quark EW couplings; TGC / QGC; etc
- о CEPC / FCC-ee: important role by *Z-pole run*, ~x2 better бднуу
- o ILC/ CLIC: important role by *beam polarizations*, made up ∫L

[ESG] SMEFT _{ND}	ILC250	CLIC380	CEPC	FCC- ee240
∫L•ab	2	1	5.6	5
δg _{HZZ}	0.39%	0.5%	0.45%	0.47%
δg_{Hbb}	0.78%	0.99%	0.63%	0.71%
$\delta g_{H\tau\tau}$	0.81%	1.3%	0.66%	0.69

Higgs self-coupling δλημη

[Di Micco et al, arXiv:1910.00012]

o through double Higgs (ZHH ~500GeV; vvHH ≥1TeV)

o through single Higgs (need multiple Q^2 to identify λ_{HHH} effects)

summary

- future e+e- Higgs factories will add great opportunities on precision determination of Higgs properties, which will help reveal the nature of BSM physics
- recoil mass analysis is the key to model-independent meas. of absolute Higgs couplings & total width
- need a global perspective on Higgs physics (+EW/Top/BSM)
- all proposed e+e- are capable of reaching ≤ 1% precision for many of the Higgs couplings
- when will any of them be realized?