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Why N31.O?

LLHC: fixed-order calculation essential for precision@colliders®

® a clean, systemalically improvable [see later| framework for first principle
calculations — solid, unambiguous predictions — new physics from small
deviations

 applicable whenever we are far from soft/collinear regions — likely to play a
crucial role for high energy colliders (less issues with acceptances etc)
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“NB: this does not mean that fo. is the only important ingredient



Why N31.O?

1) PRECISION

( )

as ~ 0.1, a,Cy ~0.3 — few percent < NGBILO
" v

\\

Few percent”

* [ixperimentally achievable, at least for standard candles (V, H, top...)

* Axp/(Q?~ 1% — sensitive to new physics at the (multi)-TeV scale, may not be
accessible directly

* o~ (.01 = study EW theory at the quantum level, without worrying about
QCD contaminations



1) PRECISTON: SOME CAVEATS

(theory) £ 1.56 pb (3.20%) (PDF+asy) .

1 +2.22 pb (+4.56%)
g = 48.58 pb—3.27pb (—6.72%)

| 48.58pb= 16.00pb  (+32.9%) (LO, rEFT)
+20.84pb  (+42.9%)  (NLO, rEFT) |
— 2.05pb  (—4.2%) ((t,b,c), exact NLO) ﬁ
9.56pb  (+19.7%)  (NNLO, rEFT) ’
0.34pb  (+0.7%) (NNLO, 1/my)
2.40 pb ) (EW, QCD-EW)
1.49 pb 1%) (N3LO, rEFT)

[Mistlberger, QCD@LHC2016]
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At the few-percent level: many non-trivial subtle effects



Why N31.O?

1) PRECISION: SOME CAVEATS

do = /d.fEldiI?Qf(a?l)f(ZEQ)dO'part($1,CEQ)FJ

In many cases, few-percent could be a theoretical limit (given our
current understanding of QCD)

* ) ~ KW scale, linear power corrections (e.g. jets) — percent

* At least a partial understanding would be as important as developing higher
order calculations (already now, e.g. top mass measurements)



Why N31.O?
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Czakon, van Hameren, Mitov,
Poncelet (2020)]
[Cacciari et al. (2015);

New handles on non-trivial multi-particle \Cruz-Mamnez, Gehrmay

dynamics, complementary to standard ones Glover, Huss (2-18)]

6



o
3
Z
o)
e
je)
T
o




N3LO: how to get there

tree

~1/€5... N/d¢11/e4... N/dqsl,gl/e?... N/dgbl,g,gT

‘Two main 1ssues
® Multi-loop amplitudes (especially in unresolved configurations) — see Harald’s talk

* How to properly extract (and regulate) IR from loop integrals. Highly non-trivial
for fully exclusive calculations — focus here. An optimal solution at NNLO 1s
not yet available (my opinion), we can get results thanks to large computing
resources



bb—H

N3LO right now: tully inclusive

gg—H
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Fully inclusive N3O
corrections for 2—1 color
singlet production 1s possible

[Dulat, Duhr, Mistlberger +
Anastasiou et al (2015-...)]

[VBE: Dreyer, Karlberg (2018)]



Colour singlet: differential results

Consider the decay of a colour-singlet state V

0o o¢

V = X+j @ NNLO

» Most of the information contained in V. — X+j] @ NNL.O
- Born-like configuration: no kinematical dependence

- As a consequence: V — X+] @ NNLO & total rate@N31.O enough for
differential rate at N3O
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Colour singlet: differential results

H — b b @ N3LLO known

[Mondini, Schiavi, Williams (2019)]
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Colour singlet: differential results

Consider the deeay production of a colour-singlet state V

oo o8

pp — V+) @ NNLO

» Most of the information contained in V. — X+j] @ NNL.O
- Born-like configuration: redanemateal non-trivial rapidity dependence

- As a consequence: pp— V+] @ NNLO & (0-p,) rapidity dependence
@N3.O enough for differential rate at N31LO
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*|n principle: we can compute fully
differential N31.O predictions for

colour singlet production with

Con:

current technology

*|n practice: need to loose a jet” n
pp—V+H@NNLO, computationally

mtensive

The bad part of the story: this trick is

not (immediately) generalisable to

o

@N arbitrary processes

-

lence

13



[Chen, Cruz-Martinez, Gehrmann,

Colour singlet: differential results

do/dy @N3LO
[Dulat, Mistlberger, Pelloni (2018)]

H+J@NNLO

Glover, Jaquier (2016)]

[Chen,Dulat,Gehrmann, Glover,Huss,BM,Pelloni, to appear]
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(See also Cieri et al. (2018) for
earlier work assuming trivial
rapidity dependence) ”



Colour singlet: beyond the Higgs

- FFor colour-singlet production: only require rapidity-dependence at zero
transverse momentum

- Factorisation — universality.  Beam functions”

- Over the past year or so: all ingredients computed
- ptbeam function [Luo, Zang, Zhu, Zhu (2020); Ebert, Mistlberger, Vita (2020)]

- N-jettiness beam function™: [Behring, Melnikov, Rietkerk, Tancredi, Wever (2019);
Ebert, Mistlberger, Vita (2020)]

- Provided that we have relevant loop amplitudes and enough computing
power this would allow for a brute-force calculation of N3[LO QCD
corrections for any colour-singlet state

*Not enough even for colour-
singlet, but has the potential to be
extended to arbitrary processes 15



Beyond colour-singlet

- Beyond colour-singlet, new frameworks are required — better
understanding of soft/collinear emission (and beyond)

» Slicing techniques

- similar to what discussed so far. Introduce resolution variable that
separates Born-like vs +jet

- -: typically, this introduce some non-locality in IR cancellations —
large numerical cancellation, huge computing power required

- +: giving up locality makes everything much simpler — may be a
shorteut to the result, it enough computing power

- +:several ingredients already known / under computation V-jeuiness
beam function, towards N-jettiness soft function [Baranowski (2020)]
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Beyond colour-singlet

- Beyond colour-singlet, new frameworks are required — better
understanding of soft/collinear emission (and beyond)

» Slicing techniques

» The way forward (my opinion): sub-leading power corrections. Would
allow for much better numerics / very interesting from a conceptual

pOth of view Moult et al. (2017-...); Boughezal, Isgro, Petriello (2018); Beneke et al (2018-...);

Laenen et al. (2018-...); Neubert et al (2020-...)]
17



Beyond colour-singlet

- Beyond colour-singlet, new frameworks are required — better
understanding of soft/collinear emission (and beyond)

» Subtraction techniques

- allow for local cancellation of IR singularities via universal subtraction
terms — mteresting per se

- +: theoretically appealing, much higher etficiency (slicing eventually
abandoned @ N1.O)

- -: the price of locality: much more challenging to devise a generic
framework

18



Beyond colour-singlet

- Beyond colour-singlet, new frameworks are required — better
understanding of soft/collinear emission (and beyond)

» Subtraction techniques

- +:1n the recent past, several of the universal ingredients computed
‘Catani, Colferai, Torrini (2019); Del Duca, Duhr, Haindl, Lazopoulos, Michel (2019-20); Bern,
Dixon, Kosower (2004); Badger, Glover (2004); Duhr, Gehrmann, Jaquier (2014); Duhr,
Gehrmann (2014); L, Zhu (2013); Dixon, Hermann, Kai, Zhu (2019); Catani, de Florian,
Rodrigo (2019); Badger, Buciuni, Peraro (2015); Zhu (2020)]

(Personal opinion: regulating sofi/collinear emission would proceed faster than for NNI1.O.
Big conceptual gap was between NIL.O and NNI.O) 9



N3LO: the real” challenges?

- Thanks to the recent progress in NNLO: good position to start thinking
at N31LO generalisations

- However, there may be surprises...

» Top pair production: MO £ "R + V7.

* Non-trivial threshold effects, starting at O(0’) [Beneke, Ruiz-Femenia (2016), see also
Melnikov, Vainshtein, Voloshin (2014

» Not captured by “standard” perturbation theory

- Factorization breaking effects for jet production

+ Non-trivial absorbitive part of loop integrals starts playing a role at N31.O. Could
spoil universality of collinear singularity in processes with non-trivial color
structure (e.g. di-jet...) [Forshaw, Siemour et al (2006-...); Catani, de Florian, Rodrigo (2011),

. Aﬂalysis confirmed in [Dixon, Hermann, Kai, Zhu (2019)]

This sort of issues are likely to be the real challenges for N*1.O computations

20



Conclusion

- N3L.O likely to be relevant for current and future precision programs at
the energy frontier

» There 1s something we can do already now, but not immediately
generalisable (either conceptually or practically)

- For “standard” soft/collinear regularisation, the path is clear —
massively) more complicated than NNL.O, but at least in principle we
know where to start

- In this talk, | focused on “standard” techniques. Recently: old 1deas (LT
duality...) powered by new insight and better computing — this may
turn out to be a good way forward

- There may however be unexpected effects, and this may require a better
understanding of the structure of gauge theories

Interesting times ahead!
21



Thank you very much

Jfor your attention!



