




Ultralight bosonic dark matter
Many bosons occupy a single mode.

Standard Halo Model + negligible self-interactions: 
manifest as a classical oscillating field with a coherence length 
given by their deBroglie wavelength. 



Axions, ALPs, & Hidden Photons
The QCD axion mass is given by:

Axion-like particles (ALPs) may have different Λ and f 
(e.g., string theories, relaxion scenario).

Hidden photons have a different phenomenology.

fa → symmetry breaking scale, ΛQCD ~ 200 MeV → QCD scale.



Axion/ALP dark matter

Astrophysical
constraints

GUT scale Planck scale



QCD axion Compton frequency
Oscillation frequency of the axion field is determined by 
the axion mass:

fa at GUT scale → MHz frequencies,

fa at Planck scale → kHz frequencies.

fa at 1013 GeV scale → GHz frequencies,



Portals
Different classes of bosons couple differently to Standard 
Model particles and fields, generating a variety of observables:

Safronova, Budker, DeMille, Jackson Kimball, Derevianko, and Clark, 
Rev. Mod. Phys. 90, 025008 (2018).



Axion couplings

Coupling to electromagnetic field

Coupling to gluon field: 
nuclear EDMs

Coupling to fermion spins



Ultralight spin-0 & spin-1 bosons

QCD axion
Axion-like particles (ALPs)
Moduli & other scalar particles
Dark/hidden photons

Ultralight bosonic 
dark matter = 
oscillating field
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ADMX: Axion Dark Matter eXperiment



HAYSTAC: 
Haloscope at Yale Sensitive to Axion CDM
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DM Radio/ABRACADABRA

Axions
(with applied B-field)

Hidden Photons
(no B-field required)

Superconducting lumped-element detector
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https://cajohare.github.io/AxionLimits/
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CASPEr:
Cosmic Axion Spin Precession Experiment
NMR-based search for axion-induced EDM and axion-spin couplings.

207Pb NMR at 4 K



CASPEr:
Cosmic Axion Spin Precession Experiment
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ARIADNE:
(Axion Resonant InterAction Detection Experiment)
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QND measurements, back-action evasion

Detector figures of merit can sometimes be improved by making 
use of quantum correlations: entanglement & squeezing

Measurements beyond SQL

[D. B. Hume, et al., Phys. Rev. Lett. 99, 120502 (2007)]
[I. Lovchinsky, et al., Science 351, 836 (2016)]

[LIGO collab., Nature Photon. 7, 613 (2013)]
[O. Hosten, et al., Nature 529, 505 (2016)]

Dynamic Hamiltonian engineering of many-body 
spin systems
[J. Choi, et al., Phys. Rev. X 10, 031002 (2020)]

Quantum sensor networks
[D. Gottesman, et al., Phys. Rev. Lett. 109, 070503 (2012)]
[E. Khabiboulline, et al., Phys. Rev. Lett. 123, 070504 (2019)]

Quantum Sensing



Global Network of 
Optical 
Magnetometers to 
search for Exotic 
Physics (GNOME)
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Quantum Sensing



Use qubit as an atomic clock whose frequency 
depends on the number of photons in the 
cavity.  The electric field of even a single 
photon will exercise the non-linearity of the 
qubit oscillator and shift its frequency.

Many QND 
measurements 
agree that the cold 
cavity contains 0 
photons

Many QND 
measurements of the 
single photon without 
absorbing it.  

Inject 1 photon

Repeatedly measure the clock frequency to determine 
whether the cavity contains 0 or 1 photon:

Akash Dixit, Aaron Chou, David Schuster

Count # of photons by measuring the quantized 
frequency shift of the qubit.

Figure Credit: Aaron Chou, FNAL

Ground state measurement: QND photon counting



HAYSTAC: Acceleration through squeezing

HAYSTAC run 1 & 2 combined exclusion plot

HAYSTAC Phase II squeezed state receiver 
projected acceleration

Droster, Alex G., and Karl van Bibber. 
"HAYSTAC Status, Results, and Plans."
arXiv:1901.01668 (2019).



kHz              MHz                  GHz                  THz

QCD Axion Mass

QCD Axion Frequency

peV neV µeV meV

QCD axion 
band

Axion 
coupling 
strength

CASPEr Electric NMR             DM Radio     ADMX-G2

ℎ𝑓𝑓 ≪ 𝑘𝑘𝐵𝐵𝑇𝑇

(2) High Occupation

Quantum Sensing



Photon counting is useless when ℎ𝑓𝑓 ≪ 𝑘𝑘𝐵𝐵𝑇𝑇

37

Thermal + 
Zero-Point

Imprecision

Backaction

Sensitivity bandwidth

• 𝑁𝑁 thermal fluctuations in 
the number of resonator 
photons

• Sensitivity not improved by 
photon counting

• Goal: reduce backaction & 
imprecision noise to widen 
sensitivity bandwidth.

→ Backaction evasion

Implement backaction evasion protocol to 
reduce both imprecision and backaction 
noise below the standard quantum limit, 
increasing the sensitivity bandwidth



High Occupation: RF Quantum Upconverters
Quantum Backaction Evasion

30 dB of phase-sensitive 
gain achieved

Figure Credit: Kent Irwin, Stanford/SLAC
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