

SN v Detector Flavor Sensitivities

Current and Near-Future SN v detectors

Experiment	Type	Mass [kt]	Lo
Super-K	$H_2O/\bar{\nu}_e$	32	J
Hyper-K	$H_2O/\bar{\nu}_e$	220	J
IceCube	$\text{String}/\bar{\nu}_e$	2500*	Sou
KM3NeT	$\text{String}/\bar{\nu}_e$	150^{*}	Italy
KamLAND	$C_n H_{2n} / \bar{\nu}_e$	1	J
Borexino	$C_n H_{2n} / \bar{\nu}_e$	0.278]
JUNO	$C_n H_{2n} / \bar{\nu}_e$	20	C
SNO+	$C_n H_{2n} / \bar{\nu}_e$	0.7	\mathbf{C}
$NO\nu A$	$C_n H_{2n} / \bar{\nu}_e$	14	1
Baksan	$C_n H_{2n} / \bar{\nu}_e$	0.24	R
HALO	$Lead/\nu_e$	0.079	\mathbf{C}
HALO-1kT	$Lead/\nu_e$	1]
DUNE	Ar/ν_e	40	1
MicroBooNe	Ar/ν_e	0.09	1
SBND	Ar/ν_e	0.12	1
DarkSide-20k	Ar/any ν	0.0386]
XENONnT	Xe/any ν	0.008]
LZ	Xe/any ν	0.007	1
PandaX-4T	$Xe/anv \nu$	0.004	(

ocation	$11.2{\rm M}_\odot$	
Japan	4000/4100	
Japan	28K/28K	
uth Pole	320 K/330 K	
y/France	17K/18K	
Japan	190/190	
Italy	52/52	
China	3800/3800	
Canada	130/130	
USA	1900/2000	
Russia	45/45	
Canada	4/3	
Italy	53/47	
USA	2700/2500	
USA	6/5	
USA	8/7	
Italy	-	
Italy	75	
USA	65	
China	37	

$27.0\mathrm{M}_\odot$	$40.0{ m M}_{\odot}$
7800/7600	7600/4900
53K/52K	52K/34K
$660 { m K} / 660 { m K}$	820K/630K
37K/38K	47 K/38 K
360/350	340/240
100/97	96/65
7200/7000	6900/4700
250/240	240/160
3700/3600	3600/2500
86/84	82/56
9/8	9/9
120/100	120/120
5500/5200	5800/6000
12/11	13/13
16/15	17/18
250	-
140	-
123	-
70	-

- From impending SNEWS2.0 whitepaper (table by Evan O'Connor)
- We will have handles on v physics: those numbers are NH/IH predictions with adiabatic MSW
 - For 10kpc, progenitor models from Mirrizi (2016), O'Connor (2015)
- Spectral and time info by favor are also vital, of course

Neutrinos and Lepton Number Violation:

v-particle physics frontier for compact objects/multi-messenger astro

Physics at issue: neutrino rest masses/hierarchy; neutrino character (Majorana or Dirac); measured mixing angles; CP-violating Phase(s); BSM issues: sterile states; NSIs

core collapse supernovae and binary neutron star mergers:
Low entropy; large lepton numbers
– highly degenerate lepton seas

Consequently, compact object Physics is *exquisitely sensitive* to *lepton number violating processes* and neutrino flavor/spin physics:

nucleosynthesis (e.g., the **r-process**) and a detected Core Collapse Supernova neutrino signal can be sensitive to neutrino mass hierarchy/flavor/spin (neutrino/antineutrino)/sterile states and BSM extensions especially in the neutrino sector

two venues where v's dominate the energetics ν -flavor dynamics \rightleftharpoons nuclear physics/isospin

Compact Objects (e.g., core collapse SN; BNS-mergers)

exquisitely sensitive to lepton number violation!

Boltzmann neutrino transport (from the 1980s onward) Coherent flavor transformation – highly nonlinear, collective oscillations

v-scattering/collisions ("halo"; QKEs), e.g., Cherry et al. 2019; Richers, McLaughlin, Kneller, Vlasenko 2019

quantum entanglement/entanglement entropy flow/frontier in computational field theory (see Balantekin, Patwardhan, Cervia 2019) *efficacy of mean field treatment?*

- Early Universe (e.g., weak decoupling/big bang nucleosynthesis) gravitation is weak and so the expansion rate is desperately slow enabling very weakly interacting particles to influence observables in *light elements*, N_{eff}, CMB

≈ 0.0

-0.2

Generators

- The results from DUNE cannot be better than the generator used to extract them.
 BSM physics needs quantitative description of SM physics (example: MiniBooNE excess)
- The generator contains everything we know about neutrino-nucleus interactions and X-sections
- Widely used generators are good in their description of flux drivers and target geometries, but lack in the quality of implemented nuclear physics, patchwork of – often outdated – theory and code snippets. Excessive tuning hides physics problems and limits trustability

Work will advance in two directions:

- ,Practical' generator development:
 - Use of state-of-the-art initial state interactions (ISI): QE,2p2h,N*,DIS, no place for outdated physics
 - Use of state-of-the-art final state interactions (FSI), effects on both ejected particles and target remnants, replace ,home-made' FSI by quantum-kinetic transport calculations
 - Use consistency and coherence between various reaction types and ISI and FSI (e.g. pion production and absorption) to minimize tuning degrees of freedom
- Nuclear theory development:
 - descriptions of neutrino-nucleus interactions by methods from nuclear many-body theory (GFMC, ...)
 - extension to heavier nuclei and relativistic regime,
 - extension to non-inclusive X-sections

Generator development needs resources:

- Cooperation of nuclear theorists + HEP experimenters + computer specialists
- Manpower support over development period (~3-5 yrs), done by university (theory) groups (typical: I senior, I-2 Postdocs, 3 grad students), after that stable support for code maintenance. working example: QGP generators (transport + hydro)
- Access to computing facilities

Practical Observations:

- 1. Present data are often limited by flux uncertainties and limited knowledge of elementary ISI Xsections: Both need data on elementary target $H \rightarrow$ nuStorm ?
- 2. Electron-nucleus interactions provide a very useful testing ground for neutrino-nucleus interacts: JLAB, LDMX proposal at SLAC, constrain the vector-interaction part of any generator/theory,
- 3. Generator development work needs specific funding with quality control and leadership as in experimental developments (as a subproject inside an experimental project (e.g. DUNE) ?)

Cross section measurements: SBND-166 (Palamara), RF6-122 (SAND), Katori-094, Sanchez-133, DUNE-053,Sanchez-139, Paley-068, Junk-165, Long-082 near detectors, variety of targets, high energy option, nuSTORM option

Complementary measurements:

NF0-102 (Askenazi), TF0-091 (Akesson), Mahn-147 *e*4*v*, LDMX electron scattering data

MH Reno, Neutrino interactions across energies

Low energy neutrino scattering: Tayloe-095, Gardiner-194, NF3-141 (Snowden), Barbeau-067, Ifft-142, IF8-139 (Scholberg), Scholberg-168, Mahapatra-104, Hedges-153 CEvNS and inelastic scattering $E_{\nu} \sim 10$'s MeV

Importance of $v_{\tau}N$ cross sections: Aurisano-152, Aurisano-154, Kelly-126 accelerator beam & atmospheric SM: e.g., structure functions, FF, different kinematic ranges BSM: $U_{\tau 3}$ with and without unitarity Theory: Wagman-177, Meyer-111, Katori-094, CompF0-193 (Kronfeld), TF11-167 (Gupta), Liu-040 lattice, pert. QCD, nuclear EFT, many body methods, phenomenological approaches, input to generators for FF, structure functions, nuclear physics inputs

Monte Carlo Generators for Neutrinos:

TF0-132 (Andreaopoulos), Gardiner-131, Jay-144, Katori-094 need for General Purpose MC generators, with flexibility for SM, BSM components

1-15 GeV neutrino energy regime:

-complementary experiments with electron and neutrino scattering -multiple targets: p and nuclear targets

 $\begin{array}{l} -\nu_{\tau} \mbox{ cross section measurements for complementary kinematic regimes} \\ -require multiple strategies to approach problems: e.g., lattice, nuclear effective field theory, perturbative QCD, phenomenological modeling \\ -flexible, modular Monte Carlo modeling \end{array}$

Reiterate conclusions of Neutrino Town Hall (CommF0-135 (Huber)):

Importance of theory \leftrightarrow measurements \leftrightarrow MC generators

Importance of nuclear physics ↔ particle physics connection

LHC neutrinos:

FASERnu2-06, Faser2-038, FPF-193, LAA-074 Fasernu2 w/ HL 3 ab^-1 luminosity to get TeV neutrino events $10^5 v_e$, $10^6 v_{\mu}$, $10^3 v_{\tau}$; synergy with astroparticle/CF

Connections across the frontiers:

Neutrino – Energy Frontiers, Neutrino – Cosmic Frontiers -Active expansion of effective volume for neutrino interactions, innovative approaches to detection (upward air showers from tau decays)

-Cross sections for neutrinos tied to multiple processes at high energy, QCD at short distances & small-x physics -Opportunities for BSM physics

<mark>HE-UHE neutrinos</mark>:

Grant-106, Katori-073, Kowalski-101, CF7-020 (Resconi)

108

 10^{-1}

 $\sigma_{\rm CC}(\nu N)/E_{\nu} \left[10^{-38} {\rm ~cm^2/GeV}
ight]_{-2}$ 01 cm $^2/{\rm GeV}$

 10^{-6}

 10^{7}

e.g., Ackermann et al., 1903.04333 Astro2020 WP

Standard Model

1010

 10^{11}

Color Glass Condensate

 10^{9}

 E_{ν} [GeV]

IceCube, Gen2, P-ONE (Pacific Ocean), cross sections, flavor physics

UHE neutrinos:

Bustamante-195, Bustamante-044, Prohira-109, Wissel-064

Detect surface particles, radio from surface or balloon, air shower imaging from ground or space (Ch & fluorescence), radar echo

MH Reno, Neutrino interactions across energies

LQCD: A very vibrant program providing non-perturbative input to the analysis of SM and BSM physics

Rajan Gupta T-2, Theoretical Division Los Alamos National Laboratory, USA

Overview of the LOIs covered in Session CPM 124

Hadron structure and spectroscopy Light and heavy flavor physics Fundamental Symmetries v-Nucleus scattering BSM with LGT Computation and algorithms Hamiltonian simulation and sign problem (QC)

10/02/2020

LQCD for v Physics: Looking ahead

- What kind of joint efforts among frontiers/groups/communities/ experiment/theory do you envision to progress?
 - Neutrino Oscillation experiments need to know incoming "real" E_{ν}
 - Collaboration between experimentalists, v-theorists, LQCD, Nuclear many body theory, event generators
 - Yearly workshop bringing together experts. Creating a joint 5 page white paper. Export these meetings to global community via web tools
- What kind of resources do you need?
 - Leadership and cluster computing resources
 - Today, the US community can effectively use 10-15 M node hours/year on machines such as Summit at Oak Ridge (200PF). Get about 3-4M
 - A large student and postdoc pool \rightarrow faculty positions

LQCD for v Physics: Looking ahead

- What do you envision as big advances in your field in the next 10 years
 - High-statistics simulations over a range of lattice spacings $0.01 \le a \le 0.15$ fm
 - Reduce continuum extrapolation errors to $\leq 1\%$ for most observables
 - Facilitate b quark physics without extrapolation from heavy "charm" region
 - Novel algorithms to generate ensembles of decorrelated gauge configurations at a < 0.06 fm, $M_{\pi} = 135$ MeV
 - Simulations with u, d, s, c flavors each tuned to their physical value.
 - Quantify iso-spin breaking effects
 - QCD+QED simulations to quantify electromagnetic effects
 - Matrix elements with 2—3 hadrons in initial and/or final states
 - Transition matrix elements: $\langle N\pi | A_w | N \rangle$, ...
 - Matrix elements within multi-nucleon systems
 - Radiative corrections to weak decays

Neutrino experimental opportunities

Kendall Mahn, MSU

Windows of opportunity: sources and detectors

Windows of opportunity: sources and detectors

Neutrinos as probes of standard particle physics

Synergies/Optimism:

- Multi-purpose experiments operating or planned
- Coverage? in energy and tests of neutrino properties

Gaps/Pessimism:

- What properties of neutrinos should we be testing? Are there other physics tests neutrinos are well suited for? What is needed for those tests?
- *NF01 x NF06 'gaps' in neutrino osc. program plan