Physics requirements for HEP detectors at colliders

Marina Artuso, Lucie Linssen, Rachel Yohay, Maksym Titov & Caterina Vernieri (IF-EF liaison)
Starting point : BRN

DOE Basic Research Needs Study on Instrumentation is in the process of releasing its conclusions on:

- Survey the present state of the HEP technology landscape.
- Identify key capabilities & performance requirements.
- Identify technologies to provide or enhance such capabilities.
- Articulate PRDs to push well beyond the current state of the art, potentially leading to transformative technological advances with broad-ranging applicability.
- Flesh out required R&D efforts with deliverables with notional timelines & key technical milestones.
- Elucidate the technical infrastructure required to support these efforts.
- Formulate a small set of instrumentation Grand Challenges that could result in game-changing experimental capabilities.

Note this is a 10-years view: Snowmass has a much long-term target (20 years-vision)
EF drivers in BRN

The transformative physics goals include 4 inspiring & distinct directions:

- Higgs properties @ sub-%
- Higgs self-coupling @ 5%
- Higgs connection to DM
- New multi-TeV particles

Technical requirements mostly from existing detector proposals.

- muon collider is not on the map
Beyond BRN

In the BRN physics drivers are very Higgs-centered, beyond Higgs:

- LLP searches could be an important benchmark for timing/trigger
 - Study of min radius for (few layers of) tracking detectors at future colliders
 - “Acceptance” for non-prompt charged particles at future detectors
- Boosted/Substructure object reconstruction is an important driver to guide detector design at future multi-TeV machines
 - pixel hit merging as one of the limiting factors
 - Also any improvement in tracking will directly impact jet reconstruction and calibration, pflow

More on this in today’s discussions

Just one example:

arXiv:1709.08705
EF drivers: b/c/strange-tagging

- A class of BSM models predicts that the origin of the 1st and 2nd generation fermion masses is an additional source of EWSB, predicts large deviations from the SM values
 - Higgs to ss as well as cs at future colliders is the next milestone to probe the nature of Yukawa couplings
- Strange quarks mostly hadronize to prompt kaons which carry a large fraction of the jet momentum
 - The most powerful high momenta K± tags with dedicated particle identification detectors may be an exclusive territory of e+ e- colliders
 - The leading V0 s (K0 s and Lambda) have a distinctive 2-prong vertices topology
- The use of precise timing information would become very relevant for flavor tagging and providing an additional handle for separation between light quarks.
 - Intermediate momentum K± ID from fast timing can become a significant contributor for b and c decays (s tag K± could be too high momentum for timing)
 - Detector design have a role too in capturing the high momenta V0 s that can decay deep into the tracker
 - Investigate optimal configurations for 4D tracking at future e+e- machines
HEP detector in the forward direction

Science driver (P5, BRN):

Search for the unknown:

- charged lepton flavor violation
- EDM

But also: general purpose detector in the forward direction [electroweak physics, dark sector, long lived particles (see panel today), Higgs to charm coupling...
Forward detectors in the BRN

<table>
<thead>
<tr>
<th>Science</th>
<th>Timescale</th>
<th>Technical Requirement (TR)</th>
<th>PRD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>medium</td>
<td>TR 5.1: Timing resolution at the level of $10 - 30$ ps per hit in the silicon-pixel vertex detectors and $10 - 30$ ps per track for both PID detectors (RICH, TORCH) and electromagnetic calorimeters</td>
<td>2, 10, 18</td>
</tr>
<tr>
<td>Tests of the CKM quark mixing matrix description</td>
<td>medium</td>
<td>TR 5.2: Development of radiation-hard, fast and cost-effective photosensors for TORCH and RICH detectors and tracking systems with optical readout</td>
<td>9, 11</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>TR 5.3: Development of the next generation ASICs to extract the large data rate (and possibly pre-process it) out of inner pixel layer detectors in a very challenging radiation environment</td>
<td>16, 17</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>TR 5.4: Radiation-hard silicon pixel detectors (fluences of $\times 10^{15}$ n$_{eq}$/cm2)</td>
<td>18, 20</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>TR 5.5: Cost-effective electromagnetic calorimeter with granularity of typically 2×2 cm2, resolution of $\frac{E}{E} \sim \frac{40}{\sqrt{E}} %$ and timing resolution of a few tens of ps; total radiation dose of ~ 200 Mrad</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>TR 5.6: Real-time processing of large amount of data (400-500 Tb/sec) and development of radiation-hard, high-rate optical links, with tight constraints on power consumption and low mass</td>
<td>16, 17, 21, 22</td>
</tr>
<tr>
<td></td>
<td>long</td>
<td>TR 5.7: Fast-timing resolution at the level of 1 ps per track for $\pi/K/\rho$ separation up to 50 GeV</td>
<td>3, 10</td>
</tr>
<tr>
<td></td>
<td>long</td>
<td>TR 5.8: Further ASICs development to extract and pre-process on detector the large data rate of inner layers detectors in an extreme radiation environment</td>
<td>16, 17</td>
</tr>
<tr>
<td></td>
<td>long</td>
<td>TR 5.9: Radiation-hard, ultra-fast silicon pixel detectors (fluences of $\times 10^{15}$ n$_{eq}$/cm2)</td>
<td>18, 19, 20</td>
</tr>
<tr>
<td></td>
<td>long</td>
<td>TR 5.10: Very high granularity calorimeters preserving an energy resolution of $\frac{E}{E} \sim \frac{40}{\sqrt{E}} %$</td>
<td>1, 2, 7, 9</td>
</tr>
<tr>
<td></td>
<td>long</td>
<td>TR 5.11: Real-time processing of large amount of data (1ExaBytes/sec) and development of radiation-hard, high-rate optical links, with tight constraints on power consumption and low mass</td>
<td>16, 17, 21, 22, 23</td>
</tr>
</tbody>
</table>

Parallel session 130

Importance of hadron identification

Community effort on the next generation of ASICs
Key experimental features of EF forward detector

- **Software trigger**, maximum flexibility to pursue the “interesting physics”
- **High data rates/fast processing**
- Add 4th dimension (time) to allow for fast processing, vertex resolution
- New EM calorimeter with at least some components providing 5D information
- Optimization of granularity/time resolution requirements
- Rad-hardness for detector components close to the beam
Open questions

How we can design better detectors to improve on:

- *jet resolution and jet substructure observables by better combining tracking-calorimetry-timing?*
- **LLP searches**
 - Testing Higgs flavor: c/s-tagging, tau-tagging
 - Forward detector capabilities