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What is trigger-level analysis?

The trigger is a fact of life—we cannot record all of collision data, even if we wanted
to do this.

In traditional "offline" analysis, we see only the events that survived the trigger, and
live with the limitations. For example, pr thresholds are sometimes higher than we
would like; we may miss a discovery because we don't trigger on the events; etc. At
ATLAS and CMS, these limitations prevent an exhaustive exploration of the
electroweak scale!

However, the trigger system sees all the events. It performs real-time (or almost-
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data read out for each event to increase the event rate (at fixed bandwidth).


https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerOperationPublicResults
https://twiki.cern.ch/twiki/pub/AtlasPublic/ApprovedPlotsDAQ

Opportunities for trigger-level analyses

These first publications are “proof of principle” and are now being followed up with
more ambitious ideas.

In the near-term (LHC Run 3), improvements to the trigger hardware and software
make new things possible. For example, ATLAS will have a larger online CPU farm
capable of running tracking for a much larger rate of events, and have partial readout of
full-detector information around regions of interest. This will allow better pile-up
mitigation, object calibration and resolution (e.g. jets), blended on-line and offline
analysis (e.g. b- tagging), and other improvements. These will allow even lower
momentum thresholds for the analyses done so far, and make new channels possible
(e.g. low-mass scalar resonances decaying to jets, photons).

For the HL-LHC, more sophisticated trigger hardware (such as “global” trigger
hardware, hardware track processors) make bypassing even the hardware-level trigger
decision a possibility. For example, CMS is planning a 40 MHz scouting for the L1
system in Phase-2 and exploring dedicated hardware for ML-based anomaly detection.

These analyses are attractive projects especially for hardware and software developers,
who are best positioned to take advantage of over-dimensioned systems.
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Experimental challenges for trigger-level analysis

Huge backgrounds and small signal can require precision control of all aspects
of the analysis. This is difficult to achieve in the online environment, especially
In a hardware system.

Real-time analyses requires a separate data handling pipeline (custom
reconstruction for partial data, data quality, calibrations, analysis framework,
etc.)

Advances are needed in reliable machine learning application in the trigger,
especially for analysis. Offline reconstruction relies more and more on ML
(e.g. b-tagging, tracking?). What aspects of this can migrate to the online
environment, where calibrations may not be as sophisticated? How to ensure a
strong correlation with offline algorithms?

Further work is needed on compression, flexible custom data formats, and
toolkits for real-time detector calibration. It needs to be easier for non-expert
offline analysts to design and deploy these techniques without the deep expert
knowledge that they currently require.

Can we someday port a full offline analysis chain into the trigger and readout?
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Trigger DAQ
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ATLAS trigger menu largely driven by inclusive triggers generically useful to
many analyses and recorded in a “main” stream. Average 1 kHz and 1 MB/event.

Additional flavour physics streams: dedicated triggers, can use delayed/custom
reconstruction, or partial-event readout (e.g. only subdetectors in 1.5X1.5 area

around a track satisfying pre-selection). Non-PE stream averages 200 Hz and
1 MB/event.

Trigger-Level Analysis stream: stores HLT reconstruction only. Discussed in this
talk. Recorded up to 26 kHz peak rate at an average 5 kB/event.

In 2018, 32 streams total: about half with full event information, half with partial
event building (PEB). .
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Trigger menu limitations during Run 2

Main menu limitations are L1 rate (multi-jet, taus, flavour physics), HLT CPU
(b-tagging of low-pT jets), and HLT rate (most triggers).
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Trigger menu limitations during Run 2

Main menu limitations are L1 rate (multi-jet, taus, flavour physics), HLT CPU
(b-tagging of low-pT jets), and HLT rate (most triggers).
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Why bother with “low py” jet data?

Summary_plo’rs from the ATLAS Exotic physics groug
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Two-body resonances are a historically
fruitful search channel (J/psi, Z, Higgs)
and a key component of the ATLAS
search program. They are well-covered
for most types of decays.

However, the HLT threshold for the single
jet trigger (440 GeV) constrains dijet
searches to the region mj>~ 1.5 TeV (~2x

pT).

The electroweak-TeV scale is special! The
W, Z, Higgs, and top are all found there.
We must study it as thoroughly as we can.

Not even SM-like couplings (few * 0.01)
are reached by the most sensitive search.

With a variety of alternate triggering
strategies or more narrowly targeted
searches, ATLAS can cover a wider range
of dijet masses, but with much less
statistical power than the full data would
allow.

We have to do better!
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TLA results from first 1/4 of Run 2
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Does not yet use strategies for other trigger limitations.

Watch for improved results with the full Run 2 dataset!
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Ghallenges of TLAIn Run 2
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Outlook for Run-3 and HL-LHG

Run 3 will bring several relevant improvements to the trigger hardware and software

Better HLT object calibration and resolution

Possibility of particle-flow jets for Run-3 (better jet resolution at low pT)
Pile-up mitigation for better control of lower-momentum (~<100 GeV) jets

Possible software tracking for rejection of pile-up for lower-momentum jets;
additional objects

Improved software flexibility for partial-event readout

Improved performance with new L1 hardware
HL-LHC

Powerful first-stage trigger capabilities with LO Global Trigger upgrade and
HLT Hardware Track Trigger

Storage and computing pressures increase

but TLA also offers a solution, at least for some types of standard physics analyses

For details on these and further ideas, see also ATL-DAQ-PUB-2017-003 and related
HSF-CWP-2017-01.
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https://cds.cern.ch/record/2295739/files/ATL-DAQ-PUB-2017-003.pdf
https://arxiv.org/pdf/1802.08640.pdf

