

Collider data analysis strategies: Thoughts on object identification and event classification

Loukas Gouskos (CERN)

Snowmass community planning kick-off meeting October 2020

Loukas Gouskos

Setting the scene

- It is still extremely exciting to be in Particle Physics [& in Collider Physics]
 - LHC: Discovery of a Higgs boson; exhaustively studying its properties
 - Many more to learn; Higgs becomes an exploration tool for BSM physics
 - Unique opportunity: direct impact on the choice & design of next generation particle collider(s)
 - Various options: e^+e^- linear vs. circular (even $\mu^+\mu^-$) and/or hadrons
- Main physics priorities:

e^+e^- (focus on low/med E_{cm})

- Measure EW/H/top properties <1%
 [necessary to probe M_{NP}>O(1TeV)]
- Flavor physics (e.g. FC Violation)
- Very weakly coupled particles
 (e.g., RH neutrinos, dark photons)

hh (e.g., $E_{cm} \sim O(100) \text{ TeV}$)

- Dírect search of particles with M~30 TeV
- Usual suspects: DM, SUSY, ..
- EW/H/top physics and rare processes
- Success of the physics program requires coherent effort in all areas
 - detector design, triggers/DAQ, event reconstruction & ID, analysis techniques + TH
- This talk: focus more on thoughts/challenges related to future colliders
 - yet, many relevant for the upcoming LHC and HL-LHC runs

Some thoughts

and PU

Detector optimization:

- e⁺e⁻: Tracking: as low material as possible
- hh: TRK/Calo granularity for ultra high-p_T objects
- Object reconstruction:
 - e.g., e⁺e⁻: goal max <u>efficiency</u> and <u>precision</u>
 - jet clustering: inclusive, exclusive, full evt?
- Object identification:
 - Heavy flavor (b/c) ID: extend to s/ud/gluons
 Also: soft &/or displaced particles
- Also: soft &/or displaced particles
 Key player: Advanced ML
 [e.g. lower-level info (particles →hits/clusters)]
 - But: understand what ML learns:
 - need uncertainties under control/calibration 10⁻²
 - EXP-TH x-talk: tune/develop MC GEN
- Other considerations: Cost
 - Absolute performance vs. cost-performance
 - Can improvements in algos/computing compensate more affordable detectors?

<u>Successful LHC recipe</u>

- Detector capabilities
- Theory/Pheno input
- Ingenuity in algo design
- Advanced tools (e.g., ML)
- Computing (GPU, HPC..)

Some thoughts (II)

- Improving event categorization:
 - Novel techniques DL, multi-class evt categorization reco in e⁺e⁻
 - Novel observables [e.g. track-based ones]
- Generally:
 - Increase effort on more complex topologies [LLP, dark sector]
 - Challenge [particularly in e⁺e⁻]: achieve <u>systematic uncertainties</u> similar to <u>statistical precision</u>
- Current LHC results do not concretely point to any BSM scenario/ mass scale
 Explore the unknowns:
 - Alternative methods: VAE, CWoLA, ...
 - e.g. Train on "known" jets types
 [QCD, top, H, Z, W] look for outliers: unconventional jets
 - Similarly in event classification [probably more relevant for hh colliders]

e⁺e⁻: Z(->μμ)H(->bb)

Full event

- All these strongly coupled to the advancements in computing
 - FPGAs for HPC, Quantum computing, ...