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Introduction

» Optimization in HEP traditionally done
with finite difference approximation of
gradient (e.g. MINUIT)

» Machine learning libraries exploit
automatic differentiation (autodiff) to give
full gradient

» Differentiable programming offers
paradigm to exploit deep learning
advances for (systematic aware)
end-to-end optimization using efficient
gradient-based optimization algorithms!

» Requires differentiable versions of
non-differentiable operations (e.g. binning)
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Abstract

A key component to the success of deep learning is the use of gradient-based optimization. Deep
learning practitioners compose a varicty of modules together to build a complex computational pipeline
that may depend on millions or billions of parameters. Differentiating such functions is enabled through
a computational technique known as automatic differentiation. The success of deep learning has led to an
abstraction known as differentiable programming, which is being promoted to a first-class citizen in
many programming languages and data analysis frameworks. This often involves replacing some common
non-differentiable operations (eg. binning, sorting) with reluxed, differentiablo analogucs. The result is
a system that can be optimized from 1 using efficient gradi
A differentiable analysis could be optimized in th — basic cuts to final fits all taking int
full systematic errors and automatically analyze Snowmass LOT outline
and challenges of adopting a di paradigm in high-energy physics.
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Ongoing Work

» Differentiable Programming in
Analysis Code

» Simultaneously optimize free
parameters with respect to the
desired physics objective (e.g.
optimize a cut value for
significance)

» Projects: INFERNO, neos

» c.f. Lukas and Nathan's talks at
PyHEP 2020 on automatic
differentiation and neos

frequency

0
10 20 30 40 X 2 04 06
epoch nn output

frequency

10 20 30 40 00 02 04 06 08 L
epoch nn output

» Differentiable Programming in
Simulation Code

» Compute gradients for simulated
samples with respect to simulation
parameters

» Reduce the number of simulated
events required for simulation-based
(aka likelihood-free) inference
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neos 3 bin observable optimized with systematics w.r.t. CL;
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Outlook E ATLAS

» Exciting possibilities for many applications!
» Medium-term goal: Develop a toolkit of differentiable
versions of common operations in analysis
» Long-term goal: Optimize realistic physics analyses by
incorporating autodiff capabilities into analysis software

» Interesting challenges around implementation (e.g.
distributed sharing of gradients)

» gradHEP: Informal interexperimental group formed
under HSF to start research in this area

» The intention of this working group is to continue to r a d H E P
investigate these issues, and provide input to the g
Snowmass process through ad-hoc contributions, with
results and the state of the field summarized in a
white-paper. — Snowmass LOI on Differentiable
Programming

» c.f. HEP Software Foundation activity page for more
info and contact
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