Thoughts on: the interface of theory calculations with experimental methods

Collider Data Analysis Strategies
Tuesday, October 6th 2020

Simone Marzani, Università di Genova & INFN Sezione di Genova
LHC Run3 and beyond

- The next runs of the LHC won’t give us any substantial increase in energy. But we will have more and more data.

- The main-stream theoretical focus is on making our tools better and better:
 - we have to make NNLO calculations our standard (loop-results for at least 2→3 topologies; more flexible subtraction schemes; interface with parton showers and/or resummation)
 - we need to upgrade parton-shower simulations to the precision club (log accuracy, colour, higher-order splitting functions)
 - we should have state-of-the art predictions for standard candles (e.g. N^3LO; N^3LL resummation; effects on parton densities)
We all agree that the challenge ahead is to find new and more efficient ways to interrogate the data from exploring less beaten paths...

Cross-pollination: bring field-specific developments to the broader pheno community to find new applications

- Jet substructure
- Study quark-gluon plasma
- Extraction of SM couplings
- Determination of PDFs

Confront new tools: ML algorithms are reshaping the way we think analyses and searches

- What is the role of expert-knowledge in designing ML algorithms?
- Can we understand what the algorithms is exploiting?
- Is this reachable within our standard approach (pQFT)?
- What about unfolded measurements?

Simone Marzani, Università di Genova & INFN Sezione di Genova
IRC safety is the basic requirement that us theorists demand about observables.

However, IRC unsafe observables are sometimes incredibly useful (tracks, multiplicities, etc).

Furthermore, for such a basic requirement, its definition is not that precise (from Sterman/Weinberg, to rIRC safety, to event geometry).

What do theorists want? It might be different things in different contexts.

Simone Marzani, Università di Genova & INFN Sezione di Genova
IRC safety is the basic requirement that us theorists demand about observables.

However, IRC unsafe observables are sometimes incredibly useful (tracks, multiplicities, etc).

Furthermore, for such a basic requirement, its definition is not that precise (from Sterman/Weinberg, to rIRC safety, to event geometry).

What do theorists want? It might be different things in different contexts.

In ATLAS we don’t care about IRC safety

(Unnamed ATLAS speaker @BOOST 2017)

Simone Marzani, Università di Genova & INFN Sezione di Genova
IRC safety is the basic requirement that us theorists demand about observables. However, IRC unsafe observables are sometimes incredibly useful (tracks, multiplicities, etc). Furthermore, for such a basic requirement, its definition is not that precise (from Sterman/Weinberg, to rIRC safety, to event geometry). What do theorists want? It might be different things in different contexts. In ATLAS we don’t care about IRC safety. (unnamed ATLAS speaker @BOOST 2017)

THANKS FOR LISTENING!

Simone Marzani, Università di Genova & INFN Sezione di Genova