Machine Learning
for Detector Simulations



CMSO

Motivation

AtlasComputinqandSoftwarePubIicResuIts

Run 5 (u=165-200)
T ST T T

putingResult 80E

fflineCom
CMS Public | |

—m— Rund: 200PU and 275fb~L/yr, 7.5 kHz, no on-going R&D included
i

| —e- Run4:200PU and 500fb‘1fyr, 10 kHz, no on-going R&D included " |

= = 10 to 20% annual resource increase

Total CPU[kHS06-years]

——
B—
.
——

70
60
50
40
30

20

Annual CPU Consumption [MHS06years]

—
o

(LI ‘ T T | T T . T . | .\ T T | T
- ATLAS Preliminary
= 2020 Computing Model - CPU

T
o
us)
Q
17
@
=
<

s Conservative R&D
v Aggressive R&D

— Sustained budget model
(+10% +20% capacity/year)

‘.\ 1 L | L 1 L | L 1 L | L L L ‘ L L 1 | 1 L 1 I 1 1 1
020 2022 2024 2026 2028 2030 2032

NFT7TT

| \ | |
2024 2026 2028 2030

o

Year

* Beginning of Run 2: full detector simulation (Geant4) took ~40% (plurality)
of grid CPU resources for CMS and ATLAS [arXiv:1803.04165]

0 Detector upgrades for HL-LHC: increased complexity [arXiv:2004.02327]
» Reconstruction CPU usage scales superlinearly with pileup
» Simulation needs to deliver more events w/ more complexity while using

smaller fraction of CPU

o Similar challenges in other frontiers (neutrino, cosmic, ...)
» ML may be able to surpass limitations of technical improvements to existing

simulation software/algorithms/etc.



https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://arxiv.org/abs/1803.04165
https://arxiv.org/abs/2004.02327

Perspective

Physics fidelity is crucial

o Without this, quoted speedups are meaningless

Basic GANSs pose convergence and reliability concerns

o If massive training datasets are needed, net CPU benefits may be reduced
o Learning more about how to improve GAN architectures and training
Other approaches are worth considering:

0 (V)AEs, CNNs & GNNs, FCNs (regression), new architectures

ML in detector simulation provides natural avenue to utilize heterogeneous
computing resources (including HPCs)

O e.g. inference as a service with GPUs, FPGAs, etc.

Need to balance tradeoff: exploration/novelty vs. production-readiness

o Limited-author papers are nice

o Collaborations need solutions implemented and tested before Run 4 starts

End-to-end ML (genecration — reconstruction): interesting alternative, but
even more concerns about reliability, accuracy, resources for training...
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Optimized autoencoder architecture with post-processing
network better than (some) GANSs [arXiv:2005.05334]

But some new techniques can improve GAN results significantly
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Many more projects on arXiv or in development!
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https://arxiv.org/abs/2005.05334
https://arxiv.org/abs/2009.03796

Backup



Glossary

GAN: Generative Adversarial Network
VAE: Variational AutoEncoder

CNN: Convolutional Neural Network
GNN: Graph Neural Network

FCN: Fully Connected Network

CPU: Central Processing Unit

GPU: Graphics Processing Unit

FPGA: Field-Programmable Gate Array
HPC: High Performance Computing
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