Fermilab Dus. Department of Science

Proton Fixed-Target Searches for New Physics at Fermilab + Booster Accumulator Ring

William Pellico (FNAL), Matt Toups (FNAL), Richard Van de Water (LANL)

6 Oct 2020

PIP-II will support a world-leading neutrino program @ FNAL

- Expected LINAC commissioning in FY27
 Ready for baselining this year
- Will be among the highest-power ~GeV proton beams in the world
- Key high-level metrics for LINAC:
 - Capable of 2 mA @ 800 MeV (1.6 MW)
 - DUNE only uses 1.1% of this total beam capacity to achieve its physics goals
 - See Eduard's talk at the RF townhall

Fixed-Target Searches for New Physics with O(10 GeV) Proton Beams at Fermi National Accelerator Laboratory

Contacts

Matt Toups (FNAL) [toups@fnal.gov], R.G. Van de Water (LANL) [vdwater@lanl.gov]

Authors and Proponents

Brian Batell (University of Pittsburg), S.J. Brice (FNAL), Patrick deNiverville (LANL), A. Fava (FNAL), Kevin J. Kelly (FNAL), Tom Kobilarck (FNAL), Pedro A. N. Machado (FNAL), Bill Pellico (FNAL), Rex Tayloe (Indiana University), R. T. Thornton (LANL), Z. Pavlovic (FNAL)

Dark Sector (DS) Searches on the Booster Neutrino Beamline (BNB)

MiniBooNE-DM pioneered accelerator-based searches for benchmark models such as vector portal dark matter (DM) with a light U(1) gauge boson that kinetically mixes with the photon by running off target in beam dump mode

M. Toups I Proton Fixed-Target Searches for New Physics at Fermilab + Booster Accumulator Ring

Short Baseline Neutrino program integration

Current short-baseline neutrino program uses horn-focused, decay-in-flight neutrino beam:

Currently at 35 kW, but we can imagine a similar setup with much higher intensities

Impinging proton beam on absorber enables DS search program:

Fixed-Target Searches for New Physics with O(1 GeV) Proton Beams at Fermi National Accelerator Laboratory

M. Toups,^{1,*} R.G. Van de Water,^{2,*} Brian Batell,³ S.J. Brice,¹ Patrick deNiverville,² Jeff Eldred,¹ Roni Harnik,¹ Kevin J. Kelly,¹ Tom Kobilarck,¹ Gordan Krnjaic,¹ B. R. Littlejohn,⁴ Bill Louis,² Pedro A. N. Machado,¹ Z. Pavlovic,¹ Bill Pellico,¹ Michael Shaevitz,⁵ P. Snopok,⁴ Rex Tayloe,⁶ R. T. Thornton,² Jacob Zettlemoyer,¹ and Bob Zwaska¹

¹Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
 ²Los Alamos National Laboratory, Los Alamos, NM 87545, USA
 ³University of Pittsburgh, Pittsburgh, PA 15260, USA
 ⁴Illinois Institute of Technology, Chicago, IL 60616, USA
 ⁵Columbia University, New York, NY 10027, USA
 ⁶Indiana University, Bloomington, IN 47405, USA

PIP-II is <u>simultaneously</u> capable of driving a MW-class GeV-scale proton fixed target program and a 2.4 MW beam line for DUNE

- Physics Opportunities At Such a Facility
 - Light DM / DS Searches
 - Decay and/or scattering signatures
 - Light Sterile Neutrino Searches
 - Both appearance and disappearance possible
 - Coherent elastic neutrino-nucleus scattering (CEvNS)
 - Provides new way to search for LDM and sterile neutrinos
 - Searches for Non-standard interactions (NSIs), tests of the Standard Model
 - Neutrino Cross Section Measurements
 - Additional topics:

7

• Searches for axion-like particles, 3-v oscillations, etc.

Accumulator Ring Needed For Ultimate Physics Reach (CEvNS)

Comparison of pion decay-at-rest v sources

8

FNAL Booster Accumulator Ring

William Pellico, Jeff Eldred, Kiyomi Seiya, CY Tan, C. M. Bhat, Matthew Toups¹, Takahiro Watanabe², Richard Van De Water³, and Chamseddine Benabderrahmane⁴

¹Fermi National Accelerator Laboratory ²RIKEN SPring-8 Center, Japan ³Los Alamos National Laboratory ⁴European Synchrotron

Booster Accumulator Ring (BAR) Concept

- A permanent magnet accumulator ring could be built in the Booster enclosure that could greatly benefit PIP II/DUNE program and set FNAL on the path to a large DS program.
- The existing Booster to BNB enclosure will be contain the new 1 GeV line.

Cost and time for this approach is greatly reduced due to synergy to PIP II and present BNB complex. A new 800 MeV line is being designed for the PIP II to Booster Injection. A new accumulator would instead receive the PIP-II linac beam and transfer it to the Booster for DUNE operations.

With the rest of the Linac pulses being used for delivery to the BAR for DS operations.

辈 Fermilab

Location Inside Booster Enclosure

Thank you

12 10/6/2020 M. Toups I Proton Fixed-Target Searches for New Physics at Fermilab + Booster Accumulator Ring

DM Event Sensitivities

Figure 1: Regions of relic abundance parameter (mixing strength) Y vs. dark matter mass m_{χ} for 6×10^{21} POT that could be achieved in a five year run with dedicated proton beam dump medium energy running in the PIP-II era. Left is the signal sensitivity for NC π^0 and right for NC-electron scattering with the SBND detector at 100 m from the dedicated beam dump. Both panels show regions where we expect 1–10 (light green), 10–1000 (green), and more than 1000 (dark green) scattering events. The solid black line is the scalar relic density line that can be probed.

🛟 Fermilab

• Setup also has sensitivity to other DS models, e.g. hadrophilic DM

DM Event Sensitivities

- Sensitivities assume a 630 kW 1 GeV proton beam impinging on a low-Z target
- We consider a 100-ton LAr scintillation detector placed 18 m downstream from the target with a 50 keV recoil energy threshold and an efficiency of 70%
- Assuming a 5-year run with a 75% uptime, we compute event sensitivities for 4.6 x 10²³ protons-on-target
- Not only probes benchmark scalar DM model, but also Majorana fermion, pseudo-Dirac fermion DM, etc.

FIG. 1. Fermilab beam dump facility argon recoil event sensitivity curves for 4.6×10^{23} protons on target compared to thermal relic density targets and existing 90% exclusion limits as a function of the dimensionless scaling variable $Y = \epsilon^2 \alpha (m_{\chi}/m_{A'})^4$, assuming $\alpha = 0.5$ and $m_A = 3m_{\chi}$.

🚰 Fermilab

BAR Parameters

Hardware

- Aperture: ~3"
- Cycle rate (being explored)
 - Hardware limitations
 - At least 100 Hz
 - Radiation limitations
 - Shielding assessment
- RF Structure(s)
 - System for Booster/DUNE
 - Pulsed
 - 44 MHz
 - System for Dark Sector RF (CW)
 - Bucket loading
 - Barrier bucket
 - Harmonic flattening
 - Compression

Beam

- Base Power: 130 kW
 - 1.0 x 10¹³ / batch
 - Space charge limitations
 - Painting
 - RF power
 - 100 Hz
- Goal Power: 200 kW
 - 1.5 x 1013 / batch
 - Upper limit TBD
- Pulses
 - Load time: ~1.5 ms
 - Pulse width TBD
 - Goal of 300-400 ns

BAR/PIP-II Upgrade

- 1 GeV Injection
 - Design to be upgraded
- Power upgraded
 - Base: 160 kW
 - Goal: 240 kW

Summary

16

- PIP-II LINAC at Fermilab capable of driving among the highest-power ~GeV proton beams in the world
 - Can simultaneously support multi-MW high energy beams for LBNF/DUNE (which uses only 1.1% of full beam capacity) and intense low (~GeV) and medium (~10 GeV) energy protons beams
- New beam dump target station on the BNB coupled with SBND detector could improve on existing MiniBooNE vector portal DM limits by more than an order of magnitude and also provide sensitivity to other DM, BSM models
- New Booster-sized, permanent magnet accumulator ring could be realized within the decade for very low cost and enable a GeV-scale proton beam dump program with a rich physics program, including sensitive searches for light DM
 - Key feature of such a beam dump facility at Fermilab is that it can be designed for and dedicated to HEP searches (neutron suppression, large detectors, flexible locations)
- Excellent opportunity for a proton beam dump based dark sector program at Fermilab that more fully utilizes PIP-II LINAC and infrastructure as well as the existing BNB complex
- Plan to develop concepts in these LOIs ahead of Snowmass Summer Study
 Fermilab