Theory Challenges in Heavy Flavor Decays
 Benjamin Grinstein UCSD

CPM

Session: Theory Challenges in Precision Measurements
Snowmass 2020
(October 7, 2020, zoom)

Laundry List

- Lifetimes
- Mixing
- Width differences
- Semileptonic decays
- determination of V_{cb} and V_{ub}
- $R(D) \& R\left(D^{*}\right)$
- New form factors in NP
- Non-leptonic decays
-2-body
- Rates
- Strong phases (\& CPV)
->2-body
- Rare decays $\quad B \rightarrow \mu \mu$
- purely leptonic, including
- radiative: $B \rightarrow K^{*} \gamma, B \rightarrow X_{s} \gamma$
- 3body: $B \rightarrow K^{(*)} \ell \ell$
- LFUV: $R(K) \& R\left(K^{*}\right)$
- angular analysis
- anomalies
- of charm

Laundry List

- Lifetimes
- Mixing
- Width differences
- Semileptonic decays
- determination of V_{cb} and V_{ub}
- $R(D) \& R\left(D^{*}\right)$
- New form factors in NP
- Non-leptonic decays
-2-body
- Rates
- Strong phases (\& CPV)
$->2$-body
- Rare decays $\quad B \rightarrow \mu \mu$
- purely leptonic, including
- radiative: $B \rightarrow K^{*} \gamma, B \rightarrow X_{s} \gamma$
- 3body: $B \rightarrow K^{(*)} \ell \ell \cup$
- LFUV: $R(K) \& R\left(K^{*}\right)$
- angular analysis
- anomalies
- of charm

Multiscale problem: EFT
(i) Integrate out heavy field (t, W, Z, H) of mass $M \gg m_{Q}$

"Matching" beyond tree level, Wilson Coefficient $C(M)$

(ii) Re-sum large logs: "running"

$$
C(\mu)=F\left(\mu / M, \alpha_{s}\right) C(M)
$$

Needs anomalous dimension in (normally) one loop order higher than matching
(iii) Compute ME at $\mu \sim m_{Q}$

Challenges in broad terms:

- Compute matching with sufficient precision:
- Expansion in α_{s} and α_{em}
- Few percent precision means $\left(\alpha_{\mathrm{s}}\right)^{2}$ and $\left(\alpha_{\mathrm{em}}\right)^{1}$
- Matching starts at
- Tree level: need 2-loops for precision
- 1-loop: need 3-loops for precision !!!
- Functional dependence on several masses (W, Z, t)
- Compute running at corresponding precision:
- Typically one higher order than matching

Challenges in broad terms (continued)

- Compute matrix elements of EFT operators (and combine into decay amplitude)
- Non-perturbative problem
- Exclusive decay rates:
- Lattice
- Limited final states
- 1 final state hadron (form factors), limited momentum range
- 2 final state hadrons, tough
- Limited interactions
- Local (ie, one insertion of $\mathrm{H}_{\mathrm{eff}}$)
- EM*weak (non-local T-prod) -- tough
- Non-systematic approaches, eg, LCSR
- Less limited
- Less reliable, not for precision physics
- Inclusive decay rates:
- HQET/OPE
- Only semileptonic
- Systematic (caveat: quark hadron duality at end-point)
- Perturbative + few non-perturbative parameters
- HQE
- Fully inclusive: lifetimes, $\Delta \Gamma, \ldots$
- Perturbative + few non-perturbative parameters
- Relies on quark-hadron duality

Lifetimes

- Theory based on HQE, with few non-perturbative parameters:

$$
\Gamma=\Gamma_{0}+\frac{\Lambda^{2}}{m_{q}^{2}} \Gamma_{2}+\frac{\Lambda^{3}}{m_{q}^{3}} \Gamma_{3}+\frac{\Lambda^{4}}{m_{q}^{4}} \Gamma_{4}+\ldots
$$

- Each order has perturbative expansion

$$
\Gamma_{j}=\Gamma_{j}^{(0)}+\frac{\alpha_{s}(\mu)}{4 \pi} \Gamma_{j}^{(1)}+\frac{\alpha_{s}^{2}(\mu)}{(4 \pi)^{2}} \Gamma_{j}^{(2)}+\ldots
$$

- Non-perturbative MEs can be independently fixed (or jointly fit) from various sources:
- spectroscopy
- direct calc: lattice, QCDSR
- moments of semileptonic inclusive decay spectrum
- Limitation: not based on OPE in Euclidean space
- quark-hadron duality assumed
- OPE-like expansion (a.k.a. HQE) performed on-shell
- no external large (euclidean) momentum
- control?
- organization of OPE?
- Justification: It works! (For ratios)
- Question: so what when it fails? What about overall normalization?

PDG:

	$B_{d}=(\bar{b} d)$	$B^{+}=(\bar{b} u)$	$B_{s}=(\bar{b} s)$	$B_{c}^{+}=(\bar{b} c)$
Mass (GeV)	$5.27955(26)$	$5.27925(26)$	$5.3667(4)$	$6.2745(18)$
Lifetime (ps)	$1.519(5)$	$1.638(4)$	$1.512(7)$	$0.500(13)$
$\tau(X) / \tau\left(B_{d}\right)$	1	1.076 ± 0.004	0.995 ± 0.006	0.329 ± 0.009

Theory:

$$
\begin{aligned}
& \begin{array}{l}
\frac{\tau\left(B^{+}\right)}{\tau\left(B_{d}\right)}{ }^{\mathrm{HQE} 2014}=1+0.03\left(\frac{f_{B_{d}}}{190.5 \mathrm{MeV}}\right)^{2}\left[(1.0 \pm 0.2) B_{1}+(0.1 \pm 0.1) B_{2}\right. \\
\\
\left.\quad-(17.8 \pm 0.9) \epsilon_{1}+(3.9 \pm 0.2) \epsilon_{2}-0.26\right] \\
=1.04_{-0.01}^{+0.05} \pm 0.02 \pm 0.01
\end{array} \\
& \begin{aligned}
\frac{\tau\left(B_{s}\right)}{\tau\left(B_{d}\right)}{ }^{\mathrm{HQE} 2014}= & 1.003+0.001\left(\frac{f_{B_{s}}}{231 \mathrm{MeV}}\right)^{2}\left[(0.77 \pm 0.10) B_{1}-(1.0 \pm 0.13) B_{2}\right. \\
& \left.\quad+(36 \pm 5) \epsilon_{1}-(51 \pm 7) \epsilon_{2}\right] \\
= & 1.001 \pm 0.002 .
\end{aligned}
\end{aligned}
$$

	$\Lambda_{b}=(u d b)$	$\Xi_{b}^{0}=(u s b)$	$\Xi_{b}^{-}=(d s b)$	$\Omega_{b}^{-}=(s s b)$
Mass (GeV)	$5.6194(6)$	$5.7918(5)$	$5.79772(55)$	$6.071(40)$
Lifetime (ps)	$1.451(13)$	$1.477(32)$	$1.599(46)$	$1.54\binom{+26}{-26}$
$\tau(X) / \tau\left(B_{d}\right)$	0.955 ± 0.009	0.972 ± 0.021	1.053 ± 0.030	$1.01\binom{+17}{-14}$

$$
\begin{aligned}
& \frac{\tau\left(\Lambda_{b}\right)}{\tau\left(B_{d}\right)} \stackrel{\mathrm{HQE} 2014}{=} 1-(0.8 \pm 0.5) \% \frac{1}{m_{b}^{2}}-(4.2 \pm 3.3) \%_{\frac{1}{m_{b}^{3}}}^{\Lambda_{b}}-(0.0 \pm 0.5) \%_{\frac{1}{m_{b}^{3}}}^{B_{d}}-(1.6 \pm 1.2) \% \frac{1}{m_{b}^{4}} \quad=0.935 \pm 0.054 \\
& \\
& \quad \frac{\tau\left(\Lambda_{b}\right)^{\mathrm{LHCb} 2014}}{\tau\left(\Xi_{b}^{+}\right)} \\
&
\end{aligned}
$$

charm

	$D^{0}=(\bar{u} c)$	$D^{+}=(\bar{d} c)$	$D_{s}^{+}=(\bar{s} c)$
Mass (GeV)	$1.86491(17)$	$1.8695(4)$	$1.9690(14)$
Lifetime (ps)	$0.4101(15)$	$1.040(7)$	$0.500(7)$
$\tau(X) / \tau\left(D^{0}\right)$	1	2.536 ± 0.017	1.219 ± 0.017

isospin violation is large!
it's from:

(which must stay small for beauty)

$$
\begin{aligned}
& {\frac{\tau\left(D^{+}\right)}{\tau\left(D^{0}\right)}}^{\mathrm{HQE} 2013}=2.2 \pm 0.4^{(\text {hadronic })_{-0.07}^{+0.03(\text { scale })}} \\
& {\frac{\tau\left(D_{s}^{+}\right)}{\tau\left(D^{0}\right)}}^{\mathrm{HQE} 2013} \\
& =1.19 \pm 0.12^{\text {(hadronic }^{+}}{ }_{-0.04}^{0.04(\text { scale })}
\end{aligned}
$$

which brings us to

Mixing: $\Delta \Gamma$

$$
\Delta \Gamma_{q}=2\left|\Gamma_{12}^{q}\right| \cos \left(\phi_{q}\right), \quad \phi_{q}=\arg \left(-M_{12}^{q} / \Gamma_{12}^{q}\right)
$$

- Again computed in HQE,

$$
\Gamma_{12}=\frac{\Lambda^{3}}{m_{b}^{3}}\left(\Gamma_{3}^{(0)}+\frac{\alpha_{s}(\mu)}{4 \pi} \Gamma_{3}^{(1)}+\ldots\right)+\frac{\Lambda^{4}}{m_{b}^{4}}\left(\Gamma_{4}^{(0)}+\ldots\right)+\ldots
$$

from annihilation and PI diagrams (previous slide)

- B_{s} : Dominated by single (cc) diagram by clever use of CKM unitarity

$$
-\frac{\Gamma_{12}^{s}}{M_{12}^{s}}=\frac{\Gamma_{12}^{s, c c}}{\tilde{M}_{12}^{s}}+2 \frac{\lambda_{u}}{\lambda_{t}} \frac{\Gamma_{12}^{s, c c}-\Gamma_{12}^{s, u c}}{\tilde{M_{12}^{s}}}+\left(\frac{\lambda_{u}}{\lambda_{t}}\right)^{2} \frac{\Gamma_{12}^{s, c c}-2 \Gamma_{12}^{s, u c}+\Gamma_{12}^{s, u u}}{\tilde{M}_{12}^{s}}
$$

- Combining HQE with lattice MEs (1910.00970)

$$
\Delta \Gamma_{s}=\left[1.86(17) B_{1}+0.42(3) B_{3}^{\prime}\right] f_{B_{s}}^{2}+\Delta \Gamma_{1 / m_{b}}=0.092(14) \mathrm{ps}^{-1}
$$

- Caveat: duality again, but worse: overall normalization.
- In QCD in $1+1$ dim at large N_{c}, there is a $\left(1 / m_{Q}\right)^{1}$ correction
- The $\left(1 / m_{Q}\right)^{1}$ correction is oscillatory
- $\Gamma(m)$ smeared over m (centered at m_{Q}) over a region of size at least a few resonances has no $\left(1 / m_{Q}\right)^{1}$ correction
- This may happen in $3+1$ at $N_{c}=3$.
- Unknown, incalculable magnitude of effect
- Possibly light quark mass independent - common shift, to normalziation: absent in ratios

Mixing: $\Delta \Gamma$

- Charm difficulties/ additional challenge

$$
x=\frac{\Delta M}{\Gamma}, \quad y=\frac{\Delta \Gamma}{2 \Gamma} .
$$

- Leading HQE term: almost perfect GIM cancellation
- Possibly dominated by much higher terms, eg, Γ_{6}
- Alternative approaches? Sum over states using U-spin and data (Petrov 1312.5304)

Exclusive vs Inclusive: $V_{c b}$

Exclusive:

- Largely 2 modes: $B \rightarrow D \ell \nu$ and $B \rightarrow D^{*} \ell \nu$
- but also $\Lambda_{b} \rightarrow \Lambda_{c} \ell \nu$
- Theory: form factors
- Fixed at endpoint by HQET (+corrs); but need
- better precision
- form away from $q_{\max }^{2}$
- Lattice: region close to $q_{\max }^{2}$
- z-expansion: constrains extrapolation to small q^{2}
- BGL vs CLN

A consensus of the workshop recommends that CLN no longer be used, ... (Mainz-2018)

- $\mathrm{R}(\mathrm{D}), \mathrm{R}\left(\mathrm{D}^{*}\right)$ derivative
- Additional form factors

Inclusive:

- OPE (almost) well justified
- quark-hadron duality near endpoint
- Method of moments
- No $1 / \mathrm{m}_{\mathrm{Q}}$ corrections
- Expansion to $\alpha_{s} \times\left(1 / m_{Q}\right)^{2},\left(1 / m_{Q}\right)^{3}$

Exclusive vs Inclusive: $V_{u b}$

Exclusive:

- Experimentally clean, e.g., fully reconstructed
- Statistics limited
- Various processes, ie, $B \rightarrow \pi, B \rightarrow \rho, B_{s} \rightarrow K, \ldots$
- Theory: form factors
- Lattice: near $q_{\text {max }}^{2}$
- Rate $\sim p_{\pi}^{3} \approx\left(q_{\max }^{2}-q^{2}\right)^{3 / 2}$
- Extrapolation needed (z-expansion)

Inclusive:
1501.05373

- In principle, OPE as in b to c
- Large charm background
- Tight cuts needed, E_{e} or q^{2} or M_{X}
- OPE breaks down ("non-local OPE")
- Some modeling required: BLNP, DGE, GGOU (ADFR, fell out of favor, not in PDG; why? Is it because it disagrees? agrees better with exclusives) - Systematics?

Gambino, @ Beauty 2016

Rare Decays

Effective field theory approach to $b \rightarrow$ sl decays

- CC (Fermi theory):
- FCNC:

$$
\Rightarrow
$$

$$
\Rightarrow \quad G_{F} V_{c b} V_{c s}^{*} C_{2} \bar{c}_{L} \gamma^{\mu} b_{L} \bar{s}_{L} \gamma_{\mu} c_{L}
$$

 s_{L}

$$
\Rightarrow \quad G_{F} V_{t b} V_{t s}^{*} \frac{\alpha}{4 \pi} C_{9(10)} \bar{s}_{L} \gamma^{\mu} b_{L} \bar{\ell} \gamma_{\mu}\left(\gamma_{5}\right) \ell
$$

- Wilson coefficients $C_{k}(\mu)$ calculated in P.T. at $\mu=m_{W}$ and rescaled to $\mu=m_{b}$

Matrix Elements (without dressing into mesons, for clarity)

The challenge of precision: effect of non-local term

$$
\operatorname{Br}\left[10^{-7}\right] \overbrace{0}^{\prime 2}
$$

Compare with R:

Perturbative QCD works!

But for R we have an OPE
Not so for O_{1-6} in B decay

- For small q^{2} the form factor (ie local) contributions to $B \rightarrow K^{*} l l$ are formally more important than the non-local ones (hep-ph/0106067)
- Non-local term (aka "non-factorizable") power suppressed.
- Dominant in resonant region
- How small q^{2} before negligible (if at all?)
- Only estimate: LCSR. (1006.4945)
- For $q^{2}<4 m_{c}{ }^{2}$
- Dispersion relation to extend to larger q^{2}
- Models resonances, no strong phases
- Model by sum of resonances: (1709.03921)
- Sum Breit-Wigner, data driven
- Consider strong phases
- Small: agree with LCSR
- Large: quite different
- Parametrized ignorance: (1809.03789)
- Expand in powers of q^{2}
- Fit to data
- Order of magnitude as expected
- "The constraining power of $B \rightarrow K^{*} \mu \mu$ on New Physics (NP) is lost, as some coefficients of the h_{λ} expansion are indistinguishable from NP contributions"

Conclusions.
Challenges: See above (tough perturbative matching/running, hard non-perturbative MEs, non-systematic approaches sneak in by force of being accustomed and lore)

Left out: the challenge of interpretation of deviations from the SM

End

