

Theory Challenges in Heavy Flavor Decays

Benjamin Grinstein UCSD

CPM Session: Theory Challenges in Precision Measurements

Snowmass 2020 (October 7, 2020, zoom)

Laundry List

- Lifetimes
- Mixing
 - Width differences
- Semileptonic decays
 - determination of V_{cb} and V_{ub}
 - R(D) & $R(D^*)$
 - •New form factors in NP
- Non-leptonic decays
 - •2-body
 - Rates
 - Strong phases (& CPV)
 - •>2-body
- Rare decays $B \rightarrow \mu \mu$
 - purely leptonic, including
 - radiative: $B \to K^* \gamma, B \to X_s \gamma$
 - 3body: $B \to K^{(*)}\ell\ell$
 - LFUV: *R*(*K*) & *R*(*K**)
 - angular analysis
 - anomalies
 - of charm

• ...

Laundry List

- Lifetimes 🖌
- Mixing
 - Width differences 🖌
- Semileptonic decays
 - determination of $V_{\rm cb}$ and $V_{\rm ub}$
 - R(D) & $R(D^*)$
 - •New form factors in NP
- Non-leptonic decays
 - •2-body
 - Rates
 - Strong phases (& CPV)
 - •>2-body
- Rare decays $B \rightarrow \mu \mu$
 - purely leptonic, including
 - radiative: $B \to K^* \gamma, B \to X_s \gamma$
 - 3body: $B \to K^{(*)}\ell\ell \checkmark$
 - LFUV: *R*(*K*) & *R*(*K**)
 - angular analysis
 - anomalies
 - of charm

• ...

Anatomy of a calculation of decay in Heavy Flavor Physics

Multiscale problem: EFT

(i) Integrate out heavy field (*t*, *W*, *Z*, *H*) of mass $M \gg m_Q$

"Matching" beyond tree level, Wilson Coefficient C(M)

$$+ \frac{m}{m} + \cdots = c \left[+ \frac{m}{m} \right]$$

(ii) Re-sum large logs: "running"

 $C(\mu) = F(\mu/M, \alpha_s)C(M)$

Needs anomalous dimension in (normally) one loop order higher than matching

(iii) Compute ME at $\mu \sim m_Q$

Challenges in broad terms:

- Compute matching with sufficient precision:
 - Expansion in α_s and α_{em}
 - Few percent precision means $(\alpha_s)^2$ and $(\alpha_{em})^1$
 - Matching starts at
 - Tree level: need 2-loops for precision
 - 1-loop: need 3-loops for precision !!!
 - Functional dependence on several masses (W, Z, t)

- Compute running at corresponding precision:
 - Typically one higher order than matching

$$C(\mu) = (1 + d_{s}(m) + \dots) [1 + Z(d_{s} l_{u} \frac{M}{m})^{n} + \alpha_{s} \frac{Z(d_{s} l_{u} \frac{M}{m})^{n}}{2 - loop} = O(l_{s})$$

$$free |evel | -loop | 1 - loop = O(1) | 2 - loop = O(l_{s})$$

Challenges in broad terms (continued)

- Compute matrix elements of EFT operators (and combine into decay amplitude)
 - Non-perturbative problem
 - Exclusive decay rates:
 - Lattice
 - Limited final states
 - 1 final state hadron (form factors), limited momentum range
 - 2 final state hadrons, tough
 - Limited interactions
 - Local (ie, one insertion of H_{eff})
 - EM*weak (non-local T-prod) -- tough
 - Non-systematic approaches, eg, LCSR
 - Less limited
 - Less reliable, not for precision physics
 - Inclusive decay rates:
 - HQET/OPE
 - Only semileptonic
 - Systematic (caveat: quark hadron duality at end-point)
 - Perturbative + few non-perturbative parameters
 - HQE
 - Fully inclusive: lifetimes, $\Delta\Gamma$, ...
 - Perturbative + few non-perturbative parameters
 - Relies on quark-hadron duality

Lifetimes

• Theory based on HQE, with few non-perturbative parameters:

$$\Gamma = \Gamma_0 + \frac{\Lambda^2}{m_q^2} \Gamma_2 + \frac{\Lambda^3}{m_q^3} \Gamma_3 + \frac{\Lambda^4}{m_q^4} \Gamma_4 + \dots$$

• Each order has perturbative expansion

$$\Gamma_j = \Gamma_j^{(0)} + \frac{\alpha_s(\mu)}{4\pi} \Gamma_j^{(1)} + \frac{\alpha_s^2(\mu)}{(4\pi)^2} \Gamma_j^{(2)} + \dots$$

- Non-perturbative MEs can be independently fixed (or jointly fit) from various sources:
 - spectroscopy
 - direct calc: lattice, QCDSR
 - moments of semileptonic inclusive decay spectrum
- Limitation: not based on OPE in Euclidean space
 - quark-hadron duality assumed
 - OPE-like expansion (a.k.a. HQE) performed on-shell
 - no external large (euclidean) momentum
 - control?
 - organization of OPE?
 - Justification: It works! (For ratios)
 - Question: so what when it fails? What about overall normalization?

B_1	B_2	ϵ_1	ϵ_2	
1.01 ± 0.01	0.99 ± 0.01	-0.08 ± 0.02	-0.01 ± 0.03	1997 QCD - SR
1.06 ± 0.08	1.01 ± 0.06	-0.01 ± 0.03	-0.01 ± 0.02	1998 Lattice
0.96 ± 0.04	0.95 ± 0.02	-0.14 ± 0.01	-0.08 ± 0.01	1998 QCD $-$ SR
1.10 ± 0.20	0.79 ± 0.10	-0.02 ± 0.02	0.03 ± 0.01	2001 Lattice

1405.3601

	$B_d = (\bar{b}d)$	$B^+ = (\bar{b}u)$	$B_s = (\bar{b}s)$	$B_c^+ = (\bar{b}c)$
Mass (GeV)	5.27955(26)	5.27925(26)	5.3667(4)	6.2745(18)
Lifetime (ps)	1.519(5)	1.638(4)	1.512(7)	0.500(13)
$\tau(X)/\tau(B_d)$	1	1.076 ± 0.004	0.995 ± 0.006	0.329 ± 0.009

taken from 1405.3601

Theory:

PDG:

$$\frac{\tau(B^+)}{\tau(B_d)}^{\text{HQE 2014}} = 1 + 0.03 \left(\frac{f_{B_d}}{190.5 \,\text{MeV}}\right)^2 \left[(1.0 \pm 0.2)B_1 + (0.1 \pm 0.1)B_2 - (17.8 \pm 0.9)\epsilon_1 + (3.9 \pm 0.2)\epsilon_2 - 0.26\right]$$

$$= 1.04^{+0.05}_{-0.01} \pm 0.02 \pm 0.01 \,.$$

$$\frac{\tau(B_s)}{\tau(B_d)}^{\text{HQE 2014}} = 1.003 + 0.001 \left(\frac{f_{B_s}}{231 \text{ MeV}}\right)^2 \left[(0.77 \pm 0.10)B_1 - (1.0 \pm 0.13)B_2 + (36 \pm 5)\epsilon_1 - (51 \pm 7)\epsilon_2\right]$$

 $= 1.001 \pm 0.002$.

	$\Lambda_b = (udb)$	$\Xi_b^0 = (usb)$	$\Xi_b^- = (dsb)$	$\Omega_b^- = (ssb)$
Mass (GeV)	5.6194(6)	5.7918(5)	5.79772(55)	6.071(40)
Lifetime (ps)	1.451(13)	1.477(32)	1.599(46)	$1.54\left(^{+26}_{-22}\right)$
$\tau(X)/\tau(B_d)$	0.955 ± 0.009	0.972 ± 0.021	1.053 ± 0.030	$1.01 \begin{pmatrix} -17\\ -14 \end{pmatrix}$

$$\frac{\tau(\Lambda_b)}{\tau(B_d)}^{\text{HQE 2014}} = 1 - (0.8 \pm 0.5)\%_{\frac{1}{m_b^2}} - (4.2 \pm 3.3)\%_{\frac{1}{m_b^3}}^{\Lambda_b} - (0.0 \pm 0.5)\%_{\frac{1}{m_b^3}}^{B_d} - (1.6 \pm 1.2)\%_{\frac{1}{m_b^4}} = 0.935 \pm 0.054 \,,$$

$$\frac{\tau(\Lambda_b)}{\tau(\Xi_b^+)}^{\text{LHCb 2014}} = 0.918 \pm 0.028 , \qquad \qquad \frac{\tau(\Lambda_b)}{\bar{\tau}(\Xi_b^+)}^{\text{HQE 2014}} = 0.95 \pm 0.06 .$$

<u>charm</u>

	$D^0 = (\bar{u}c)$	$D^+ = (\bar{d}c)$	$D_s^+ = (\bar{s}c)$
Mass (GeV)	1.86491(17)	1.8695(4)	1.9690(14)
Lifetime (ps)	0.4101(15)	1.040(7)	0.500(7)
$\tau(X)/\tau(D^0)$	1	2.536 ± 0.017	1.219 ± 0.017

isospin violation is large! it's from:

(which must stay small for beauty)

$$\frac{\tau(D^+)}{\tau(D^0)}^{\text{HQE 2013}} = 2.2 \pm 0.4^{(\text{hadronic})} {}^{+0.03(\text{scale})}_{-0.07} ,$$

$$\frac{\tau(D_s^+)}{\tau(D^0)}^{\text{HQE 2013}} = 1.19 \pm 0.12^{(\text{hadronic})} {}^{+0.04(\text{scale})}_{-0.04}$$

which brings us to

Mixing: $\Delta\Gamma$

$$\Delta \Gamma_q = 2 |\Gamma_{12}^q| \cos(\phi_q) , \quad \phi_q = \arg(-M_{12}^q/\Gamma_{12}^q).$$

• Again computed in HQE,

$$\Gamma_{12} = \frac{\Lambda^3}{m_b^3} \left(\Gamma_3^{(0)} + \frac{\alpha_s(\mu)}{4\pi} \Gamma_3^{(1)} + \dots \right) + \frac{\Lambda^4}{m_b^4} \left(\Gamma_4^{(0)} + \dots \right) + \dots$$

from annihilation and PI diagrams (previous slide)

• B_s : Dominated by single (cc) diagram by clever use of CKM unitarity

$$-\frac{\Gamma_{12}^s}{M_{12}^s} = \frac{\Gamma_{12}^{s,cc}}{\tilde{M}_{12}^s} + 2\frac{\lambda_u}{\lambda_t} \frac{\Gamma_{12}^{s,cc} - \Gamma_{12}^{s,uc}}{\tilde{M}_{12}^s} + \left(\frac{\lambda_u}{\lambda_t}\right)^2 \frac{\Gamma_{12}^{s,cc} - 2\Gamma_{12}^{s,uc} + \Gamma_{12}^{s,uu}}{\tilde{M}_{12}^s}$$

• Combining HQE with lattice MEs (1910.00970)

$$\Delta\Gamma_s = [1.86(17)B_1 + 0.42(3)B'_3]f^2_{B_s} + \Delta\Gamma_{1/m_b} = 0.092(14) \text{ ps}^{-1}$$

- Caveat: duality again, but worse: overall normalization.
 - In QCD in 1+1 dim at large N_c , there is a $(1/m_Q)^1$ correction
 - The $(1/m_Q)^1$ correction is oscillatory
 - $\Gamma(m)$ smeared over *m* (centered at m_Q) over a region of size at least a few resonances has no $(1/m_Q)^1$ correction
 - This may happen in 3+1 at $N_c = 3$.
 - Unknown, incalculable magnitude of effect
 - Possibly light quark mass independent common shift, to normalziation: absent in ratios

Mixing: $\Delta\Gamma$

• Charm difficulties/ additional challenge

$$x = \frac{\Delta M}{\Gamma}$$
, $y = \frac{\Delta \Gamma}{2\Gamma}$.

- Leading HQE term: almost perfect GIM cancellation
- Possibly dominated by much higher terms, eg, Γ_6
- Alternative approaches? Sum over states using U-spin and data (Petrov 1312.5304)

Semileptonic decays

see 2006.07287 (Mainz workshop 2018)

Exclusive vs Inclusive: V_{cb}

Exclusive:

- Largely 2 modes: B → Dℓν and B → D*ℓν
 but also Λ_b → Λ_cℓν
- Theory: form factors
 - Fixed at endpoint by HQET (+corrs); but need
 - better precision
 - form away from q_{\max}^2
 - Lattice: region close to q_{\max}^2
 - *z*-expansion: constrains extrapolation to small q²
 BGL vs CLN

A consensus of the workshop recommends that CLN no longer be used, ... (Mainz-2018)

•R(D), R(D*) derivative

•Additional form factors

Inclusive:

- OPE (almost) well justified
 - quark-hadron duality near endpoint
- Method of moments
- No $1/m_Q$ corrections
- Expansion to $\alpha_s \times (1/m_Q)^2, (1/m_Q)^3$

Exclusive vs Inclusive: V_{ub}

Exclusive:

- Experimentally clean, *e.g.*, fully reconstructed
- Statistics limited
- Various processes, *ie*, $B \to \pi, B \to \rho, B_s \to K, \dots$
- Theory: form factors
 - Lattice: near q_{\max}^2
 - Rate ~ $p_{\pi}^3 \approx (q_{\max}^2 q^2)^{3/2}$
 - Extrapolation needed (*z*-expansion)

Inclusive:

- In principle, OPE as in b to c
- Large charm background
- Tight cuts needed, E_e or q^2 or M_X
- OPE breaks down ("non-local OPE")
- Some modeling required: BLNP, DGE, GGOU (ADFR, fell out of favor, not in PDG; why? Is it because it disagrees? agrees better with exclusives)
- Systematics?

2006.07287

Gambino, @ Beauty 2016

Rare Decays

Effective field theory approach to $b \rightarrow s\ell\ell$ decays

The challenge of precision: effect of non-local term

To be sure, precise form factors (FFs) needed too In absence of non-local term, HQET +SU(3) symmetry relates FFs to semileptonic decays: double ratios good to few percent

 $\frac{\Gamma(B \to K\ell\ell) / \Gamma(B \to \pi\ell\nu)}{\Gamma(D \to K\ell\nu) / \Gamma(D \to \pi\ell\nu)}$

Compare with R:

Perturbative QCD works!

But for *R* we have an OPE

Not so for O_{1-6} in *B* decay

• For small q^2 the form factor (ie local) contributions to $B \rightarrow K^*ll$ are formally more important than the non-local ones (hep-ph/0106067)

• Non-local term (aka "non-factorizable") power suppressed.

- Dominant in resonant region
- How small q^2 before negligible (if at all?)
- Only estimate: LCSR. (1006.4945)
 - For $q^2 \ll 4m_c^2$
 - Dispersion relation to extend to larger q^2
 - Models resonances, no strong phases
- Model by sum of resonances: (1709.03921)
 - Sum Breit-Wigner, data driven
 - Consider strong phases
 - Small: agree with LCSR
 - Large: quite different
- Parametrized ignorance: (1809.03789)
 - Expand in powers of q^2
 - Fit to data
 - Order of magnitude as expected

• "The constraining power of $B \to K^* \mu \mu$ on New Physics (NP) is lost, as some coefficients of the h_{λ} expansion are indistinguishable from NP contributions"

Conclusions.

Challenges: See above (tough perturbative matching/running, hard non-perturbative MEs, non-systematic approaches sneak in by force of being accustomed and lore)

Left out: the challenge of interpretation of deviations from the SM

End