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Why hadron collider?

Highest energies achieved in the lab.

Offers a first direct glance at shortest distances.

HE-LHC

FCC-hh/SppC



LHC and recent proposals

100 TeV, a “standard” benchmark.  FCC-hh, SppC

LHC

27 (HE-LHC), 37 (LE-FCC)

Physics case for 27, 37, and 100 TeV have been studied.



Beyond the known options

100 TeV, a “standard” benchmark.  FCC-hh, SppC

LHC

27 (HE-LHC), 37 (LE-FCC)

200

500

higher?

} another benchmark?

} A goal post beyond 100 TeV?



My talk

- Go over the physics potential of high energy pp 
colliders. 


A broad brushed picture of physics at > 100 TeV pp 
collider (based on simple extrapolations)


- My thoughts on the benchmarks. 



Hadron collider reach

Sharp falling Parton Luminosity Lp ⟷ a ≫ 1

σ ∼ Lp ⋅ ̂σ ∝
1

M2a
̂σ ̂σ ∝

1
M2

Cross section at hadron collider, for producing heavy 
new physics with mass M.



Hadron collider reach

Sharp falling Parton Luminosity Lp ⟶ a ≫ 1

Reach scale with energy. 

With a weaker dependence on luminosity

̂σ ∝
1

M2

For two colliders with different energy and luminosity 

E1, ℒ1 E2, ℒ2and

Reach in new physics mass, M1  and M2  scales as 

M1

M2
= ( E1

E2 )
a

a + 1

( ℒ1

ℒ2 )
1

2a + 2

Cross section at hadron collider, for producing heavy 
new physics with mass M.

σ ∼ Lp ⋅ ̂σ ∝
1

M2a
̂σ



Physics program at hadron collider

Figure 7: Cross sections for the production of dijet pairs with invariant mass Mjj > Mmin, at c.m. energiesp
s = 14 and 100 TeV. The jets are subject to the pT and ⌘ cuts shown in the legend.

notice that the benefit of luminosity is more prominent at low mass than at high mass. We also notice
that, considering the multi-year span of the programme, and assuming a progressive increase of the
luminosity integrated in a year, an early start at low luminosity does not impact significantly the
ultimate reach after a fixed number of years.
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Figure 8: Evolution with time of the mass reach at
p
s = 100 TeV, relative to HL-LHC, under di↵erent

luminosity scenarios (1 year = 6 ⇥ 106 sec). The left (right) plot shows the mass increase for a (qq̄) resonance
with couplings enabling HL-LHC discovery at 6 TeV (1 TeV).

These results are not an argument for modest luminosity as an ultimate goal, but a reminder
of the advantages of high collider energy. Should specific very-high-mass targets arise, the overall
optimization of energy and luminosity need not be restricted to a single parameter.
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These results are not an argument for modest luminosity as an ultimate goal, but a reminder
of the advantages of high collider energy. Should specific very-high-mass targets arise, the overall
optimization of energy and luminosity need not be restricted to a single parameter.
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Rapid gain in 
mass reach

Hinchliffe, Kotwal, Mangano, Quigg, LTW, 1504.06108
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Rapid gain in 
mass reach

Precision measurement
becomes possible

Hinchliffe, Kotwal, Mangano, Quigg, LTW, 1504.06108
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A big step on energy frontier

3.9 Comparing Colliders

The multi-jet plus Emiss

T signature of the gluino-neutralino model with light flavor decays provides
a useful study with which to compare the potential impact of different proton colliders. Figure 8
shows the 5� discovery reach [95% CL exclusion] for two choices of integrated luminosity at 14
TeV, along with the full data set assumed for 33 and 100 TeV. At 14 TeV, the factor of 10 increase
in luminosity leads to a modest increase by 350 GeV in the gluino limits. The smallness of this
increase is due to the rapidly falling cross section. Furthermore, because the signal regions are not
background-free, the improvement in cross section-limit does not match the factor of 10 increase
in luminosity; the shift in mass reach corresponds to only roughly a factor of five in the gluino
production cross-section. For lighter gluinos, there is no improvement to the range of accessible
neutralino masses. This is because the systematic uncertainty dominates in the signal regions for
these models except in the high gluino mass tail.

In contrast, increasing the center-of-mass energy has a tremendous impact on the experimentally
available parameter space, since now much heavier gluinos can be produced without relying on the
tails of parton distributions to supply the necessary energy. Figure 8 makes a compelling case for
investing in future proton colliders which can operate at these high energies.
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Figure 8: Results for the gluino-neutralino model with light flavor decays. The left [right] panel shows the
5� discovery reach [95% CL exclusion] for the four collider scenarios studied here. A 20% systematic
uncertainty is assumed and pileup is not included.

Figure 9 provides a comparison of the optimal cut at the different colliders that results from
applying the analysis discussed in Sec. 3.2 as a function of gluino mass (assuming a 1 GeV
neutralino). It is interesting to note that the slope of the HT cut is larger than that for the E

miss

T

cut. The search is taking advantage of the tremendous energy that is imparted to jets when these
heavy gluinos decay. Furthermore, it is also interesting that the HT cuts track very closely between
machines (until mass of the gluino becomes so heavy that a given collider can no longer produce
them in appreciable quantities), while the Emiss

T cuts begin to flatten out for very high mass gluinos.
This can be understood by inspecting the histograms provided in Figs. 2, 4, and 6. The signal and
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5σ discovery reach: Z’B
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4.5 TeV @ 14 TeV LHC, 300 fb-1

5.5 TeV @ 14 TeV LHC, 3 ab-1

28 TeV @ 100 TeV, 3 ab-1

Could discover resonances with 
gB as small as 0.35 to 0.5

di-jet resonance

Felix Yu,  2013

Cohen et al, 2013

Gori, Jung, LTW,  Wells, 2014

Figure 1. Top panel: the production cross sections for benchmakr Z 0s for pp collider at 14, 33, and
100 TeV. Bottom panel: the discovery and exclusion reaches of Z 0 for VLHC 100 TeV at 1 ab�1

(blue) and 10 ab�1 (red) and LHC 14 TeV at 300 fb�1 (orange) and 3000 fb�1 (green).
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Precision measurements

- Maybe the new physics scale is above 102 TeV.


- The NP effect can be parameterized by EFT 
operators


- Can only probe through precision measurements.  

1
Λ2

𝒪(6),
1

Λ4
𝒪(8), . . . Λ ∼ scale of new physics



Energy = precision

(δσ/σ)ee ∼
m2

W

Λ2
∼ (10−3)expAt FCC-ee/CEPC/ILC

At hadron collider (δσ/σ)had ∼
E2

Λ2

E = parton energy ≈ 0.1 ECM

Λ ∼ 0.1 × ECM(δσ/σ)−1/2
exp.errorCan probe:

Effects larger at higher energies!

(δσ/σ)exp.error ∼ 10 % , Λ ∼ 30 TeV with ECM = 100 TeVFor example:



What are we looking for?




No lose theorem?

- Are we guaranteed to discover X (e.g. X=SUSY)? 


‣ No. 


- Standard Model can be consistent up to the 
Planck scale. 


- At the same time, we do have questions to 
answer, models to test. We need to go forward. 



Physics targets

- Origin of the Electroweak scale.


- Understanding the Higgs better. 


- Dark Matter


- Flavor/CP


- Matter anti-matter asymmetry.


- …



Physics targets

- Origin of the Electroweak scale.


- Understanding the Higgs better. 


- Dark Matter


- Flavor/CP


- Matter anti-matter asymmetry.


- …



Electroweak scale, 100 GeV.  
mh , mW …

Origin of the weak scale

Weak scale not fundamental! 

For a detailed discussion: See V. Cavaliere and M. Reece, Session 126 



Electroweak scale, 100 GeV.  
mh , mW …

Origin of the weak scale

The energy scale of new physics

responsible for the weak scale Question: where this scale is?



Electroweak scale, 100 GeV.  
mh , mW …

MPlanck = 1019 GeV ? 


If so, why is so different from 100 GeV?

Hierarchy problem.

Origin of the weak scale



Electroweak scale, 100 GeV.  
mh , mW …

MPlanck = 1019 GeV? 


Origin of the weak scale

Natural theory (low E SUSY, etc.).

However, strong constraints from the LHC 

< TeV 



Which direction to go?

higher MNP, more tuning

More stealthy.

Our models

clever model building

Simpler theories. 

exp. limits



Which direction to go?

More stealthy.

Our models

clever model building

Simpler theories. 

Only experiment can tell!

Higher energy, better sensitivity.

exp. limits

higher MNP, more tuning



Pushing ahead with hadron collider

fine-tuning =
1

16⇡2
m2

T vs m2
h = (125 GeV)2

8.3. SUPERSYMMETRY 121

ity is achieved for m(c̃0
1 ) ⇡ 0 (i.e. Dm(t̃, c̃0

1 ) � mt), while the reach in mt̃ degrades for larger
c̃0

1 masses. For this reason, high-energy lepton colliders, e.g. CLIC3000, might become com-
petitive with HL-LHC in these topologies, as their stop mass reach is close to

p
s/2 even for

low Dm(t̃, c̃0
1 ). Lower centre-of-mass energy lepton facilities do not have sufficient kinematic

reach. The exclusion limits are summarised in Fig. 8.8; the discovery potential in all channels
is about 5% lower. If the t̃�c̃0

1 mass splitting is such that final states include very off-shell W
and b-jets, t̃ masses up to about 1 TeV can be excluded at the HL-LHC [443]. A two-fold and
five-fold increase in reach is expected for the HE-LHC [443] and FCC-hh [139] respectively,
with potential of improvements, especially in very compressed scenarios, via optimisation of
monojet searches [455].
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Fig. 8.8: Top squark exclusion reach of different hadron and lepton colliders. All references
are reported in the text. Results for CLIC have been communicated privately by the authors.
Results for LE-FCC are extrapolated from HL- and HE-LHC studies.

Future collider searches of gluinos and stops will be powerful probes on the role of natu-
ralness in the Higgs sector, as shown in Table 8.1. For a SUSY-breaking mediation mechanism
near the unification scale, gluino searches at FCC-hh will probe naturalness at the level of 10�5

and, even in the case of low-scale mediation, naturalness can be tested at the level of 10�3 from
the leading stop contribution. Independently of any naturalness consideration, the measured
value of the Higgs mass can be used as an indicator of the scale of SUSY particle masses.
Indeed, in the minimal SUSY model, the prediction of the Higgs mass agrees with the experi-
mental value only for stops in the multi-TeV range or larger. The most relevant range of stop
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ralness in the Higgs sector, as shown in Table 8.1. For a SUSY-breaking mediation mechanism
near the unification scale, gluino searches at FCC-hh will probe naturalness at the level of 10�5

and, even in the case of low-scale mediation, naturalness can be tested at the level of 10�3 from
the leading stop contribution. Independently of any naturalness consideration, the measured
value of the Higgs mass can be used as an indicator of the scale of SUSY particle masses.
Indeed, in the minimal SUSY model, the prediction of the Higgs mass agrees with the experi-
mental value only for stops in the multi-TeV range or larger. The most relevant range of stop
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ity is achieved for m(c̃0
1 ) ⇡ 0 (i.e. Dm(t̃, c̃0

1 ) � mt), while the reach in mt̃ degrades for larger
c̃0

1 masses. For this reason, high-energy lepton colliders, e.g. CLIC3000, might become com-
petitive with HL-LHC in these topologies, as their stop mass reach is close to

p
s/2 even for

low Dm(t̃, c̃0
1 ). Lower centre-of-mass energy lepton facilities do not have sufficient kinematic

reach. The exclusion limits are summarised in Fig. 8.8; the discovery potential in all channels
is about 5% lower. If the t̃�c̃0

1 mass splitting is such that final states include very off-shell W
and b-jets, t̃ masses up to about 1 TeV can be excluded at the HL-LHC [443]. A two-fold and
five-fold increase in reach is expected for the HE-LHC [443] and FCC-hh [139] respectively,
with potential of improvements, especially in very compressed scenarios, via optimisation of
monojet searches [455].
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near the unification scale, gluino searches at FCC-hh will probe naturalness at the level of 10�5

and, even in the case of low-scale mediation, naturalness can be tested at the level of 10�3 from
the leading stop contribution. Independently of any naturalness consideration, the measured
value of the Higgs mass can be used as an indicator of the scale of SUSY particle masses.
Indeed, in the minimal SUSY model, the prediction of the Higgs mass agrees with the experi-
mental value only for stops in the multi-TeV range or larger. The most relevant range of stop
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Future collider searches of gluinos and stops will be powerful probes on the role of natu-
ralness in the Higgs sector, as shown in Table 8.1. For a SUSY-breaking mediation mechanism
near the unification scale, gluino searches at FCC-hh will probe naturalness at the level of 10�5

and, even in the case of low-scale mediation, naturalness can be tested at the level of 10�3 from
the leading stop contribution. Independently of any naturalness consideration, the measured
value of the Higgs mass can be used as an indicator of the scale of SUSY particle masses.
Indeed, in the minimal SUSY model, the prediction of the Higgs mass agrees with the experi-
mental value only for stops in the multi-TeV range or larger. The most relevant range of stop
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Probing neutral naturalness

20 OVERVIEW OF THE PHYSICS CASES FOR CEPC-SPPC

Figure 7. Blue contours show �3/�SM
3 . Measuring �3 with a precision of 30%, 20%, and 8% can be achieved

at 14 TeV, 33 TeV, and 100 TeV hadron colliders with 3 ab�1 of data, respectively. A 1000 GeV ILC with 2.5
ab�1 could achieve a precision of 13%. See text for details.

5.1 Triple-higgs Coupling

The triple-higgs coupling in our EWSB vacuum hhi = v, hSi = 0 is related to the third derivative of
the zero-temperature effective potential

�3 ⌘
1

6

d3
�
V0(h) + V CW

0 (h)
�

dh3

�����
h=v

=
m2

h

2v
+

�3
HS

v3

24⇡2m2
S

+ . . . (5.1)

The first and second term above is the SM tree-level and singlet loop-level contribution. Other sub-
dominant SM loop contributions are not shown. Fig. 7 shows �3/�SM

3 in the (mS , �HS) plane. For
illustrative purposes, the contours are also shown in the areas where �S is non-perturbative.

As pointed out by [52], a strong one-step phase transition via the effects of a real singlet is
correlated with a large correction to �3. Fig. 7 shows that requiring vc/Tc > 0.6 (1.0) implies
�3/�SM

3 > 1.2 (1.3). Such a sizable deviation makes it possible to exclude this type of strong phase
transition.

One can measure �3 through double higgs production. The cross-section for producing a pair
of higgs bosons is roughly three orders of magnitude smaller than the cross-section for producing a
single higgs, which highlights the challenge of the measurement and the necessity for high luminosity.
Although the 4b final state has the largest rate, it also suffers from a huge QCD background. Instead,
the most promising channel is in bb��, whose main backgrounds are QCD and tt̄h production. Various
studies have found that �3 can be measured between 30%-50% accuracy at the 14 TeV LHC with 3
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Figure 8. Dashed blue contours: the one-loop corrections to the associated production cross-section of Zh at
lepton colliders Eq. (5.2), in % relative to the SM.

ab�1 [87–91]. The accuracy can be refined to 20% and 8% for a 33 TeV and 100 TeV collider with 3
ab�1, respectively [91].

The precision attainable for measuring �3 at lepton colliders is generally below that achievable
at the HL-LHC. However, a high-luminosity, high-energy ILC with

p
s = 1000 GeV and 2.5 ab�1 of

data could measure �3 with a precision of 13% [92, 93].
The results of these studies imply that while it is unlikely a definitive exclusion will be achieved

at a 14 or 33 TeV collider, a 100 TeV collider could exclude the entire one-step phase transition region
of Fig. 7 (orange shaded region) with a confidence of better than 2 to 5 �, depending on mS . A high-
energy ILC could exclude most, though not all, of the one-step transition region at the 2� level. Such
measurements would also be sensitive to the two-step transition from tree-effects (red shaded region)
for �HS & 2.

5.2 Zh production cross section at Lepton colliders

The singlet can also affect higgs couplings by generating a small correction to the higgs wave function
renormalization, which modifies all higgs couplings by a potentially measurable amount. In particu-
lar, precision measurements of the Zh production cross section at lepton colliders might be another
avenue for indirect detection of such a singlet. [94]

At one loop, the fractional change in Zh production relative to the SM prediction is given by [94,
95]

��Zh =
1

2

|�HS |
2v2

16⇡2m2
h

[1 + F (⌧�)] (5.2)
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Figure 1.16 Left: Shift in triple Higgs coupling. Right: Percentage shift in the Zh coupling.

where x = m2
h
/(4m2

S
). In much of the region with a strong first-order phase transition, this is within579

reach of the CEPC, though it can be as small as .1%, shown in the right panel of Fig. 1.16. This is at the580

absolute edge of CEPC sensitivity.
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Figure 1.17 Rate of process pp ! SS ! hhhh at the LHC and SppC.

581

We conclude that, even in this very worst case scenario, the SppC allows us to probe the physics582

giving us a first-order phase transition, and in much of the relevant parameter space, the CEPC should583

see hints of deviations in the Higgs couplings. Needless to say, even small modifications from this worst-584

case scenario can make detection much easier. For instance, if the Z2 symmetry is broken by an even585

tiny amount so that a > 10�10, then S will decay as S ! hh inside the detector. Direct S production586

will be much easier to see, giving a spectacular signal pp ! SS ! hhhh. This should allow the SppC587

to cover the allowed range of mS up to 1 TeV. While a detailed study is left for future work, an estimate588

of the reach for producing 100 events is shown in Fig. 1.17. Note that while at fixed mass, the SppC589

cross-section is ⇠ 100 times larger than at the LHC, the mass reach is ⇠ 2.5 times greater, compared to590

the typical factor of ⇠ 5 we are accustomed to. This is because both the production and decay vertices591

of the off-shell Higgs are suppressed by factors of (v/E) at high-energies, and the cross-section scales592
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Larger statistics at higher energies
1.1. Overview of production modes 7

gg → HH (NNLOFTapprox)

VBF (N3LO)

WHH (NNLO)

ZHH (NNLO)
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Figure 1.2: Total production cross sections for Higgs pairs within the SM via gluon fusion,
vector-boson fusion, double Higgs-strahlung and double Higgs bremsstrahlung off top quarks.
PDF4LHC15 parton densities have been used with the scale choices according to Table 1.1. The size
of the bands shows the total uncertainties originating from the scale dependence and the PDF+Æs
uncertainties.

Figure 1.3: Higgs pair invariant mass distribution at leading order for the different contributions to
the gluon fusion production mechanism and their interference.
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6 Chapter 1. HH cross section predictions
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Figure 1.1: Diagrams contributing to Higgs pair production: (a) gluon fusion, (b) vector-boson fu-
sion, (c) double Higgs-strahlung and (d) double Higgs bremsstrahlung off top quarks. The trilinear
Higgs coupling contribution is marked in red.

including partial finite top quark mass effects [24]. Very recently, also the third order corrections
have been computed in the heavy top quark limit [25]. The QCD corrections increase the total cross
section by about a factor of two with respect to the LO prediction, and they will be discussed in
more detail in the following section.

Vector-boson fusion. The vector-boson fusion (VBF) qq ! H H qq is the second-largest produc-
tion mechanism, and it is dominated by t-channel W and Z exchange in analogy to single Higgs
production. It involves continuum diagrams originating from two Higgs radiations off the virtual
W or Z bosons, and diagrams in which a single Higgs boson (off-shell) splits into a Higgs pair
(Fig. 1.1b). The QCD corrections are only known in the structure-function approach, i.e. where
only the t-channel W and Z exchange is taken into account and interference effects for external
quarks of the same flavor are neglected. This approximation is valid at the level of a percent similar
to the single Higgs case. Within this approach the QCD corrections to the total cross section are
known up to N3LO [26–28], while the exclusive calculation is available at NNLO [29]. The pertur-
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including partial finite top quark mass effects [24]. Very recently, also the third order corrections
have been computed in the heavy top quark limit [25]. The QCD corrections increase the total cross
section by about a factor of two with respect to the LO prediction, and they will be discussed in
more detail in the following section.

Vector-boson fusion. The vector-boson fusion (VBF) qq ! H H qq is the second-largest produc-
tion mechanism, and it is dominated by t-channel W and Z exchange in analogy to single Higgs
production. It involves continuum diagrams originating from two Higgs radiations off the virtual
W or Z bosons, and diagrams in which a single Higgs boson (off-shell) splits into a Higgs pair
(Fig. 1.1b). The QCD corrections are only known in the structure-function approach, i.e. where
only the t-channel W and Z exchange is taken into account and interference effects for external
quarks of the same flavor are neglected. This approximation is valid at the level of a percent similar
to the single Higgs case. Within this approach the QCD corrections to the total cross section are
known up to N3LO [26–28], while the exclusive calculation is available at NNLO [29]. The pertur-
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Fig. 3.10: Sensitivity at 68% probability on the Higgs self-coupling parameter k3 at the various
future colliders. All the numbers reported correspond to a simplified combination of the consid-
ered collider with HL-LHC, which is approximated by a 50% constraint on k3. For each future
collider, the result from the single-H from a global fit, and double-H are shown separately. For
FCC-ee and CEPC, double-H production is not available due to the too low

p
s value. FCC-ee

is also shown with 4 experiments (IPs) as discussed in Ref. [75] although this option is not part
of the baseline proposal. LE-FCC corresponds to a pp collider at

p
s = 37.5 TeV.

be achieved based on the developments in the field in the last years, for both e+e� and pp
colliders. Figure 3.2 has already shown that the dominant uncertainties in most Higgs couplings
at the HL-LHC are theoretical, even after assuming a factor of two improvement with respect to
the current state of the art. Higgs couplings will be approaching the percent level at HL-LHC.
At the e+e� Higgs factories detailed measurements of the electroweak Higgs production cross
sections and (independently) of the decay branching ratios will be performed. Higgs couplings
will be probed at approaching the per mille level. At e+e� colliders, a campaign of electroweak
measurements at the Z-pole and at the WW threshold is foreseen. The increase in the number of
Z and WW events with respect to LEP/SLD, as shown in Fig. 3.5, indicates that statistical errors
will decrease by as much as two orders of magnitude at the future machines. As a consequence
of this increased statistical precision, the requirements on the theoretical errors for EWPO [78]
are even more stringent than for precision Higgs physics.

To interpret these precise results significant theoretical improvements in several directions
are required. The first is the increase of the accuracy of fixed order computations of inclusive
quantities, e.g. from next-to-leading-order (NLO) to next-to-next-to-leading order (NNLO) and
beyond. This reduces the so-called intrinsic uncertainties, i.e. those corresponding to the left-
over unknown higher order terms in the perturbative expansion. Another important element is
the accuracy in the logarithmic resummations that are needed to account for effects of multiple
gluon or photon radiation in a large class of observables. In this case, different techniques and
results are available, some numerical and some analytic, of different accuracy (from next-to-
leading log (NLL) to next-to-next-to-leading log (NNLL) and beyond) and applicability. Im-

Extrapolating to higher energies more difficult. 

We should expect a factor of a few improvement. 
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WIMP Dark matter
Model Therm. 5� discovery coverage (TeV)

(color, n, Y ) target mono-� mono-µ di-µ’s disp. tracks
(1,2,1/2) Dirac 1.1 TeV — 2.8 — 1.8 � 3.7

(1,3,0) Majorana 2.8 TeV — 3.7 — 13 � 14
(1,3,✏) Dirac 2.0 TeV 0.9 4.6 — 13 � 14

(1,5,0) Majorana 11 TeV 3.1 7.0 3.1 10 � 14
(1,5,✏) Dirac 6.6 TeV 6.9 7.8 4.2 11 � 14

(1,7,0) Majorana 23 TeV 11 8.6 6.1 8.1 � 12
(1,7,✏) Dirac 16 TeV 13 9.2 7.4 8.6 � 13

Table 1: Generic minimal dark matter considered in this paper and a brief summary of
their 5� discovery coverage at a 30 TeV high energy muon collider with the three individual
channels. Further details of individual and combined channels, the 2� and 5� reaches, and
di↵erent collider parameter choices, including

p
s =3, 6, 10, 14, 30, 100 TeV are provided in

the summary plots in Figure 9. More details can be found in Ref. [22].

great potential in searching for these candidates, and rendering decisive conclusion on this

scenario.

The best-known examples include the SU(2) doublet and triplet, also known as the

Higgsino and Wino in supersymmetric theories. In addition to these, we also consider a

broader class of DM candidates, including higher SU(2) representations [23, 24, 25], the so-

called “minimal dark matter” scenario. More specifically, we will consider multiplets (1, n, Y )

under the Standard Model (SM) gauge group SU(3)C⌦SU(2)L⌦U(1)Y. First, we consider

fermionic multiplets. In this case, they only have gauge interactions at the renormalizable

level. The mass scale of the EW multiplet is set by the vector-like mass parameter M .

Minimally, after electroweak symmetry breaking, the mass degeneracy among the members

of the multiplet will be lifted by EW loop corrections [26, 27, 23, 24, 28]. For n > 7, the

Landau pole will be about one order of magnitude above the mass of EW multiplet [29].

Hence, we will focus on n  7 We begin with odd-dimensional multiplets, (1, n = 2T +1, Y ),

with a positive integer T . If Y = 0, the electrically neutral member is always the lightest

mass eigenstate in the multiplet. In this case, fermions in these multiplets can be either

Majorana or Dirac, as we listed in the left column of Table 1. Beyond the renormalizable

level, there could be operators that will allow the dark matter particle to decay. It has

been proposed [30] that the stability can be also guaranteed by introducing a small hyper-

charge Y = ✏, with the dark matter candidate acquiring a small electric charge Q = ✏.

Additional symmetries can be also imposed so that the neutral particle remains a good dark

matter candidate. Here, we will not insist on a particular mechanism for the stability of the

dark matter, since such a mechanism will not have an impact on the collider signals to be

investigated in this paper. We will, however, adopt the notation (1, n = 2T + 1, ✏) to label

a Dirac multiplet, and correspondingly (1, n = 2T + 1, 0) for a Majarona multiplet.

20

The simplest WIMP model: DM part of EW multiplet.

Interaction: Standard Model gauge interactions.  
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Very predictive. Thermal relic abundance → mDM > TeV

Really need (very) high energy colliders!   

The simplest WIMP model: DM part of EW multiplet.

Interaction: Standard Model gauge interactions.  
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Fig. 8.14: Summary of 2s sensitivity reach to pure Higgsinos and Winos at future colliders.
Current indirect DM detection constraints (which suffer from unknown halo-modelling uncer-
tainties) and projections for future direct DM detection (which suffer from uncertainties on the
Wino-nucleon cross section) are also indicated. The vertical line shows the mass corresponding
to DM thermal relic.

representative examples [483] are chosen.
In both cases, the DM particle is a massive Dirac fermion (c). In the first example,

the mediator is a spin-1 particle (Z0) coupled to an axial-vector current in the Lagrangian as
�Z0

µ(gDM c̄gµg5c +g f Â f f̄ gµg5 f ), where f are SM fermions. This model is particularly inter-
esting for collider searches because the reach of direct DM searches is limited, as the interaction
in the non-relativistic limit is purely spin-dependent. In the second example, the mediator is a
spin-0 particle (f ) with interactions f(gDM c̄c � g f Â f y f f̄ f /

p
2). This model can serve as a

prototype for various extensions of the SM involving enlarged Higgs sectors.
In Fig. 8.15 a compilation of future collider sensitivities to the two Simplified Models

under consideration, with a choice of couplings of (gf = 0.25, gDM = 1.0) for the axial-vector
model and (gf = 1.0, gDM = 1.0) for the scalar model, are shown. The reach of collider experi-
ments to this kind of models is strongly dependent on the choice of couplings. As an example,
the sensitivity of dijet and monojet searches decreases significantly with decreased quark cou-
plings: with 36 fb�1 of LHC data [484] and assuming a DM mass of 300 GeV and gDM = 1.0,
the limits from dijet searches on the axial-vector mediator mass decrease from 2.6 TeV for a
quark coupling of gq = 0.25 to 900 GeV for gq = 0.1, while the monojet limits decrease from
1.6 TeV (gq = 0.25) to 1 TeV (gq = 0.1).

The mono-photon constraints at lepton colliders result from the mediator coupling to
leptons, whereas at hadron colliders only the quark couplings are relevant. As a result, the
two cases cannot be compared like-for-like, although the results illustrate the relevant strengths
for exploring the dark sector in a broad sense. Furthermore, mono-photon constraints apply in
a general EFT context, hence additional complementary coupling-dependent constraints, such
as on four-electron interactions, may be relevant.

Constraints for HL-LHC and HE-LHC are taken from [443, 485]. The FCC-hh monojet
constraints for the axial-vector model are estimated using the collider reach tool, with results
consistent with the analysis performed in [139]. Estimates for FCC-hh, in the case of the scalar
model, are taken from [486]. Estimates for low-energy FCC-hh (LE-FCC) are generated from
the collider reach tool alone. Complementary dijet-resonance constraints for the axial-vector

100 TeV pp collider is needed 

to cover the EW doublet (Higgsino) and triplet (wino) DM. 



EW Dark matter reach

1 5 10 20 30

(1
,5

,0
)

(1
,5

,ϵ
)

(1
,3

,0
)

(1
,3

,ϵ
)

(1
,7

,ϵ
)

(1
,7

,0
)

100 TeV

200 TeV

500 TeV

mDM (TeV)

Higher energy needed to cover higher dimensional multiplets. 
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Fig. 4.7: Relative PDF uncertainties on parton-parton luminosities from the PDF4LHC15 and
FCC-eh PDF sets, as a function of the mass of the produced heavy object, MX , at

p
s = 100 TeV.

Shown are the gluon-gluon (top left), quark-gluon (top right), quark-antiquark (bottom left) and
quark-quark (bottom right) luminosities. The LHeC expectation is very similar but misses one
order of magnitude towards low x.

logarithms resummed and the contribution of electroweak corrections should be analyzed and
included in the determination of global PDFs in the foreseeable future. Furthermore, as already
pointed out in in Sect. 4.1, a precision physics programme at future hadron colliders requires
a more detailed description of the partonic substructure of hadrons as encoded e.g. in GPDs
or TMDs. Theoretically challenging is also the phenomenon of saturation of partonic densities
at small enough values of the fraction of momentum x, which has developed into a complete
and coherent formalism of the Colour Glass Condensate [203–205]. Furthermore, a reliable
determination of the parton distribution functions of nucleons bound within nuclei (nPDFs), is
particulary relevant for precision phenomenology and fundamental understanding of the strong
interactions in the nuclear environment [206, 207].

4.5.3 Numerical Lattice QCD
Many of the SM predictions require the knowledge of parameters and observables which en-
code nonperturbative QCD effects. They can only be calculated from first principles by using
LQCD [114, 147, 148].

Over the past years, an increased computing power, together with the development of
better algorithms and analytical frontiers techniques have enabled realistic LQCD predictions
with controlled errors. LQCD allows for a precise determination of a wide range of hadronic

Strong in PDF and 
related measurements
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Fig. 8.10: Exclusion reach for Higgsino-like charginos and next-to-lightest neutralinos with
equal mass m (NLSP), as a function of the mass difference Dm between NLSP and LSP. Exclu-
sion reaches using monojet searches at pp and ep colliders are also superimposed (see text for
details).

Collider experiments have significant sensitivity also to sleptons. Searches for staus, su-
perpartners of t leptons, might be particularly challenging at pp facilities due to the complex-
ity of identifying hadronically-decaying taus and reject misidentified candidates. Analysis of
events characterised by the presence of at least one hadronically-decaying t and pmiss

T show
that the HL-LHC will be sensitive to currently unconstrained pair-produced t̃ with discov-
ery (exclusion) potential for mt̃ up to around 550 (800) GeV [443]. The reach depends on
whether one considers t̃ partners of the left-handed or the right-handed tau lepton (t̃R or
t̃L, respectively), with substantial reduction of the sensitivity in case of t̃R. The HE-LHC
would provide sensitivity up to 1.1 TeV [443], and an additional three-fold increase is ex-
pected for the FCC-hh (extrapolation). Lepton colliders could again provide complementary
sensitivity especially in compressed scenarios: ILC500 [428] would allow discovery of t̃ up to
230 GeV even with small datasets, whilst CLIC3000 would allow reach up to mt̃ = 1.25 TeV
and Dm(t̃,c0

1 ) = 50 GeV [454].

8.3.3 Non-prompt SUSY particles decays
There are numerous examples of SUSY models where new particles can be long-lived and may
travel macroscopic distances before decaying. Long lifetimes may be due to small mass split-
tings, as in the case of pure Higgsino/Wino scenarios, or due to small couplings, as in R-parity
violating SUSY models, or due to heavy mediators, as in Split SUSY. For HL-LHC [443], stud-
ies are available on long-lived gluinos and sleptons. Exclusion limits on gluinos with lifetimes
t > 0.1 ns can reach about 3.5 TeV, using reconstructed massive displaced vertices. Muons dis-
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Fig. 3.10: Sensitivity at 68% probability on the Higgs self-coupling parameter k3 at the various
future colliders. All the numbers reported correspond to a simplified combination of the consid-
ered collider with HL-LHC, which is approximated by a 50% constraint on k3. For each future
collider, the result from the single-H from a global fit, and double-H are shown separately. For
FCC-ee and CEPC, double-H production is not available due to the too low

p
s value. FCC-ee

is also shown with 4 experiments (IPs) as discussed in Ref. [75] although this option is not part
of the baseline proposal. LE-FCC corresponds to a pp collider at

p
s = 37.5 TeV.

be achieved based on the developments in the field in the last years, for both e+e� and pp
colliders. Figure 3.2 has already shown that the dominant uncertainties in most Higgs couplings
at the HL-LHC are theoretical, even after assuming a factor of two improvement with respect to
the current state of the art. Higgs couplings will be approaching the percent level at HL-LHC.
At the e+e� Higgs factories detailed measurements of the electroweak Higgs production cross
sections and (independently) of the decay branching ratios will be performed. Higgs couplings
will be probed at approaching the per mille level. At e+e� colliders, a campaign of electroweak
measurements at the Z-pole and at the WW threshold is foreseen. The increase in the number of
Z and WW events with respect to LEP/SLD, as shown in Fig. 3.5, indicates that statistical errors
will decrease by as much as two orders of magnitude at the future machines. As a consequence
of this increased statistical precision, the requirements on the theoretical errors for EWPO [78]
are even more stringent than for precision Higgs physics.

To interpret these precise results significant theoretical improvements in several directions
are required. The first is the increase of the accuracy of fixed order computations of inclusive
quantities, e.g. from next-to-leading-order (NLO) to next-to-next-to-leading order (NNLO) and
beyond. This reduces the so-called intrinsic uncertainties, i.e. those corresponding to the left-
over unknown higher order terms in the perturbative expansion. Another important element is
the accuracy in the logarithmic resummations that are needed to account for effects of multiple
gluon or photon radiation in a large class of observables. In this case, different techniques and
results are available, some numerical and some analytic, of different accuracy (from next-to-
leading log (NLL) to next-to-next-to-leading log (NNLL) and beyond) and applicability. Im-

+ higgs coupling 
such as κW

Helpful in Higgs 

measurements

Sensitive to NP. 
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H†H operator of the SM. The minimal scalar portal model operates with one extra singlet field
S and two types of couplings, µ (or sinq ) and lHS [353]. The coupling constant lHS leads to
pair-production of S but cannot induce its decay, which requires a non-vanishing sinq . This
portal has several theoretical motivations. The new scalar can generate the baryon asymmetry
of the Universe [512] and play the role of mediator between SM particles and light DM in
case of secluded annihilations (cc ! ff , where c is the light DM particle and f the light
scalar mediator) [513]. It can also address the Higgs fine-tuning problem (via the relaxion
mechanism [514]), which generically leads to relaxion-Higgs mixing [515] and provides an
alternative baryogenesis mechanism [516] and a DM candidate [517, 518].

The experimental sensitivities are shown in Fig. 8.17. Shaded grey areas are already ex-
cluded, as detailed in Ref. [361]. The low-mass (< 10 GeV, see Chapter 9), low-coupling range
is optimally covered by SHiP at the Beam Dump Facility and MATHUSLA200. FASER2, with
3 ab�1 will explore the region above few GeV compatible with that of CODEX-b. MATH-
USLA200 has a unique reach in the high-mass and very low-coupling regime. Vertical lines
correspond to the bounds on the Higgs/dark-Higgs quartic coupling lHS and on m2

S/v2 from the
projections for the untagged-Higgs at future colliders [39] (see discussion in [519]). The mass
range above a few GeV can be explored also by CLIC and LHeC/FCC-eh using the displaced-
vertex technique. The large-coupling regime is covered by e+e� colliders using the recoil
technique (e+e� ! ZS) or running at the Z-pole, via the process e+e� ! Z ! S`+`�.

Fig. 8.17: Exclusion limits for a Dark Scalar mixing with the Higgs boson. LHeC, FCC-eh,
CLIC (all stages) curves and the vertical lines correspond to 95% CL exclusion limits, while all
others to 90% CL exclusion limits. See text for details.

In the limit of small mixing angle, one can bound the Higgs/dark-Higgs quartic coupling lHS
via the Higgs invisible width, which is naturally expected to satisfy the relation lHS . m2

S/v2.
In Table 8.3 projections for the constraints on lHS and the scalar mass for various future collider
options are provided.

A good complement to a pp program.
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Hadron vs lepton

1 Introduction

Goal: convey qualitative lessons about physics of high-energy muon colliders, strengths

and weaknesses compared to other proposals. Articulate purpose of the paper, which is to

illustrate how to think about muon colliders, identify energies and luminosities that make

such colliders compelling, pinpoint processes for further study.

1. History/context

2. Muon collider as an all-in-one machine (eroding the energy/precision dichotomy)

3. Muon collider as an electroweak boson collider

4. Production modes: s-channel, VBF, brem, loops

5. Comparison with other machines: equivalent pp energies for various quantum numbers

and production modes, more detailed than Maltoni [Nathaniel]

6. Experimental considerations [Chris/Isobel]

1.1 Muons vs. Protons
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Figure 1: The center of mass energy
p
sp in TeV at a proton-proton collider giving the

equivalent cross section as a muon collider operating at the center of mass energy
p
sµ.

Curves correspond to gg (orange) or qq̄ (blue) production at the proton-proton collider and
µ
+
µ
� production at the muon collider, with partonic cross sections related by � ⌘ [�̂]p/[�̂]µ.

The bands correspond to two di↵erent choices of proton PDF set, NNPDF3.0 LO (as in [1])
and CT18NNLO. Left: 2 ! 1 scattering. Right: 2 ! 2 scattering.

A useful benchmarking exercise is to compare the center-of-mass energies for which muon

and proton colliders have equivalent cross sections [2, 1]. To make the comparison, we work

in terms of generalized parton luminosities, in terms of which the inclusive cross section for

3

We “know” how to make hadron colliders. 


But, we also need it to be much (O(10)) bigger. 

What is our best route to (super) high energies?

See P. Meade’s talk in this session. 



Thoughts on benchmarks

100 TeV, a “standard” benchmark.  FCC-hh, SppC

LHC

27 (HE-LHC), 37 (LE-FCC)

200

500

higher?

} another benchmark?

} A goal post beyond 100 TeV?



Below 100.
- Physics at 27, 37, as well 100 has been studied. 


Physics potential in between bracketed. 


For example, 75 TeV would be also a good step above 
the LHC. 
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Fig. 3.10: Sensitivity at 68% probability on the Higgs self-coupling parameter k3 at the various
future colliders. All the numbers reported correspond to a simplified combination of the consid-
ered collider with HL-LHC, which is approximated by a 50% constraint on k3. For each future
collider, the result from the single-H from a global fit, and double-H are shown separately. For
FCC-ee and CEPC, double-H production is not available due to the too low

p
s value. FCC-ee

is also shown with 4 experiments (IPs) as discussed in Ref. [75] although this option is not part
of the baseline proposal. LE-FCC corresponds to a pp collider at

p
s = 37.5 TeV.

be achieved based on the developments in the field in the last years, for both e+e� and pp
colliders. Figure 3.2 has already shown that the dominant uncertainties in most Higgs couplings
at the HL-LHC are theoretical, even after assuming a factor of two improvement with respect to
the current state of the art. Higgs couplings will be approaching the percent level at HL-LHC.
At the e+e� Higgs factories detailed measurements of the electroweak Higgs production cross
sections and (independently) of the decay branching ratios will be performed. Higgs couplings
will be probed at approaching the per mille level. At e+e� colliders, a campaign of electroweak
measurements at the Z-pole and at the WW threshold is foreseen. The increase in the number of
Z and WW events with respect to LEP/SLD, as shown in Fig. 3.5, indicates that statistical errors
will decrease by as much as two orders of magnitude at the future machines. As a consequence
of this increased statistical precision, the requirements on the theoretical errors for EWPO [78]
are even more stringent than for precision Higgs physics.

To interpret these precise results significant theoretical improvements in several directions
are required. The first is the increase of the accuracy of fixed order computations of inclusive
quantities, e.g. from next-to-leading-order (NLO) to next-to-next-to-leading order (NNLO) and
beyond. This reduces the so-called intrinsic uncertainties, i.e. those corresponding to the left-
over unknown higher order terms in the perturbative expansion. Another important element is
the accuracy in the logarithmic resummations that are needed to account for effects of multiple
gluon or photon radiation in a large class of observables. In this case, different techniques and
results are available, some numerical and some analytic, of different accuracy (from next-to-
leading log (NLL) to next-to-next-to-leading log (NNLL) and beyond) and applicability. Im-
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ity is achieved for m(c̃0
1 ) ⇡ 0 (i.e. Dm(t̃, c̃0

1 ) � mt), while the reach in mt̃ degrades for larger
c̃0

1 masses. For this reason, high-energy lepton colliders, e.g. CLIC3000, might become com-
petitive with HL-LHC in these topologies, as their stop mass reach is close to

p
s/2 even for

low Dm(t̃, c̃0
1 ). Lower centre-of-mass energy lepton facilities do not have sufficient kinematic

reach. The exclusion limits are summarised in Fig. 8.8; the discovery potential in all channels
is about 5% lower. If the t̃�c̃0

1 mass splitting is such that final states include very off-shell W
and b-jets, t̃ masses up to about 1 TeV can be excluded at the HL-LHC [443]. A two-fold and
five-fold increase in reach is expected for the HE-LHC [443] and FCC-hh [139] respectively,
with potential of improvements, especially in very compressed scenarios, via optimisation of
monojet searches [455].
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Fig. 8.8: Top squark exclusion reach of different hadron and lepton colliders. All references
are reported in the text. Results for CLIC have been communicated privately by the authors.
Results for LE-FCC are extrapolated from HL- and HE-LHC studies.

Future collider searches of gluinos and stops will be powerful probes on the role of natu-
ralness in the Higgs sector, as shown in Table 8.1. For a SUSY-breaking mediation mechanism
near the unification scale, gluino searches at FCC-hh will probe naturalness at the level of 10�5

and, even in the case of low-scale mediation, naturalness can be tested at the level of 10�3 from
the leading stop contribution. Independently of any naturalness consideration, the measured
value of the Higgs mass can be used as an indicator of the scale of SUSY particle masses.
Indeed, in the minimal SUSY model, the prediction of the Higgs mass agrees with the experi-
mental value only for stops in the multi-TeV range or larger. The most relevant range of stop
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Fig. 8.8: Top squark exclusion reach of different hadron and lepton colliders. All references
are reported in the text. Results for CLIC have been communicated privately by the authors.
Results for LE-FCC are extrapolated from HL- and HE-LHC studies.

Future collider searches of gluinos and stops will be powerful probes on the role of natu-
ralness in the Higgs sector, as shown in Table 8.1. For a SUSY-breaking mediation mechanism
near the unification scale, gluino searches at FCC-hh will probe naturalness at the level of 10�5

and, even in the case of low-scale mediation, naturalness can be tested at the level of 10�3 from
the leading stop contribution. Independently of any naturalness consideration, the measured
value of the Higgs mass can be used as an indicator of the scale of SUSY particle masses.
Indeed, in the minimal SUSY model, the prediction of the Higgs mass agrees with the experi-
mental value only for stops in the multi-TeV range or larger. The most relevant range of stop
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Fig. 8.14: Summary of 2s sensitivity reach to pure Higgsinos and Winos at future colliders.
Current indirect DM detection constraints (which suffer from unknown halo-modelling uncer-
tainties) and projections for future direct DM detection (which suffer from uncertainties on the
Wino-nucleon cross section) are also indicated. The vertical line shows the mass corresponding
to DM thermal relic.

representative examples [483] are chosen.
In both cases, the DM particle is a massive Dirac fermion (c). In the first example,

the mediator is a spin-1 particle (Z0) coupled to an axial-vector current in the Lagrangian as
�Z0

µ(gDM c̄gµg5c +g f Â f f̄ gµg5 f ), where f are SM fermions. This model is particularly inter-
esting for collider searches because the reach of direct DM searches is limited, as the interaction
in the non-relativistic limit is purely spin-dependent. In the second example, the mediator is a
spin-0 particle (f ) with interactions f(gDM c̄c � g f Â f y f f̄ f /

p
2). This model can serve as a

prototype for various extensions of the SM involving enlarged Higgs sectors.
In Fig. 8.15 a compilation of future collider sensitivities to the two Simplified Models

under consideration, with a choice of couplings of (gf = 0.25, gDM = 1.0) for the axial-vector
model and (gf = 1.0, gDM = 1.0) for the scalar model, are shown. The reach of collider experi-
ments to this kind of models is strongly dependent on the choice of couplings. As an example,
the sensitivity of dijet and monojet searches decreases significantly with decreased quark cou-
plings: with 36 fb�1 of LHC data [484] and assuming a DM mass of 300 GeV and gDM = 1.0,
the limits from dijet searches on the axial-vector mediator mass decrease from 2.6 TeV for a
quark coupling of gq = 0.25 to 900 GeV for gq = 0.1, while the monojet limits decrease from
1.6 TeV (gq = 0.25) to 1 TeV (gq = 0.1).

The mono-photon constraints at lepton colliders result from the mediator coupling to
leptons, whereas at hadron colliders only the quark couplings are relevant. As a result, the
two cases cannot be compared like-for-like, although the results illustrate the relevant strengths
for exploring the dark sector in a broad sense. Furthermore, mono-photon constraints apply in
a general EFT context, hence additional complementary coupling-dependent constraints, such
as on four-electron interactions, may be relevant.

Constraints for HL-LHC and HE-LHC are taken from [443, 485]. The FCC-hh monojet
constraints for the axial-vector model are estimated using the collider reach tool, with results
consistent with the analysis performed in [139]. Estimates for FCC-hh, in the case of the scalar
model, are taken from [486]. Estimates for low-energy FCC-hh (LE-FCC) are generated from
the collider reach tool alone. Complementary dijet-resonance constraints for the axial-vector
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Above 100.

- Beyond 100, need to be as different as possible.

150 won’t be too different than 100. Would be 
50% better than 100. 


200?


500??? 


- Important to understand where the upper limit is. 



 Conclusion: benchmark for physics studies

What is a reasonable upper limit? 

100 TeV, a “standard” benchmark.  FCC-hh, SppC

LHC

200

500

higher?

Good to have one at 75 TeV. }

To understand the physics potential,

good to have a benchmark > 100 TeV.


Ideally, >> 100 TeV. 
}
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Some Future Hadron collider proposals 

24
Future Circular Collider Study
Michael Benedikt
FCCW 2019, 24 June 2019, Brussels

ESG request for parameters of a 
lower-energy hadron collider

parameter FCC-hh FCC-
hh-6T HE-LHC HL-

LHC LHC

collision energy cms [TeV] 100 37.5 27 14 14
dipole field [T] 16 6 16 8.33 8.33
beam current [A] 0.5 0.6 1.1 1.1 0.58

synchr. rad. power/ring [kW] 2400 57 101 7.3 3.6
peak luminosity [1034 cm-2s-1] 5 30 10 (lev.) 16 5 (lev.) 1
events/bunch crossing 170 1000 ~300 460 132 27
stored energy/beam [GJ] 8.4 3.75 1.4 0.7 0.36

• NbTi technology from LHC, magnet with single-layer coil providing 6 T at 1.9 K:
Æ Corresponding beam energy 18.75 TeV or 37.5 TeV c.m.
Æ Significant reduction of synchrotron radiation wrt FCC-hh (factor 50) and corresponding 

cryogenic system requirements.
• Luminosity goal 10 ab-1 over 20 years or 0.5 ab-1 annual luminosity:

Æ Beam current 0.6 A or 20% higher than for FCC-hh, 1.2E11 ppb (FCC-hh: 1.0 ppb).
Æ Stored beam energy 3.75 GJ vs 8.4 GJ for FCC-hh.

• Analysis of physics potential, technology requirements and cost  ongoing.

M. Benedikt and F. Zimmermann, FCC week
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target luminosity HL-LHC: 3 ab-1 ,  HE-LHC and FCC-hh: 20-30 ab-1

Future Hadron colliders 



 44 Hill and Solon, 2014 



However, didn’t quite pan out

fine-tuning = comparison

Supersymmetry Composite Higgs

stop top partner, T 

current limit: 

1

16⇡2
m2

T vs m2
h = (125 GeV)2

mT ⇠ 1 TeV
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Fig. 3.9: 68% probability reach on Higgs couplings at the different future colliders from the
Global fit SMEFTND. For details, see Ref. [39].

The rate of rare Higgs boson decays such as H ! µ+µ� that allows the study of the
second generation lepton couplings, will be best measured by HL-LHC with an accuracy of
about 4%.

It is difficult to access the couplings for the first generation. The current limit ke < 611
[67] is based on the direct search for H ! e+e�. A study at FCC-ee [68] has assessed the
reach of a dedicated run at

p
s = mH . In one year, an upper limit of 2.5 times the SM value can

be reached, while the SM sensitivity would be reached in a five-year run. For the light quark
couplings, please see Ref. [39] for further discussion.

When FCC-ee is combined with FCC-eh and FCC-hh a further significant improvement is
seen, particularly for couplings to top quark, muons, photons and Zg where FCC-hh will benefit
from very large event samples. The improvement in kW comes primarily from FCC-eh. A study
of various other combination of aspects of the FCC programme is documented in Ref. [39].

The sensitivity of the Higgs branching ratio to BSM invisible final states is predicted to
be improved by a factor 3 (CLIC) to 10 (FCC-ee, ILC) with respect to HL-LHC. For FCC-hh a
sensitivity to branching ratios as small as 0.025% is expected to be achieved. Branching ratios
to untagged decays are typically probed with a precision of (1�2)%.

In Fig. 3.9, the results of the fit corresponding on the EFT benchmark, expressed in terms
of effective couplings, are shown. Again, it is seen that compared to the HL-LHC the e+e�

colliders improve most parameters by about factors of 5-10. The exceptions are the coupling
parameters related to top, Zg and µ couplings. The sensitivity of the different types of e+e�

colliders is similar in their first stages. The improvements seen for HE-LHC and LHeC are
more modest. For the Z and W a sensitivity below 0.3% can be achieved by ILC, CLIC and
FCC. At this precision, the uncertainty is potentially limited by the intrinsic theory uncertainties
which is not considered here (see discussion in Sect. 3.2.3). For fermions, the best sensitivity is
reached for b-quarks and t-leptons, and it is about 0.5%.



10.1. PRESENT STATE OF ACCELERATOR TECHNOLOGY FOR HEP 163

Table 10.1: Summary of the future colliders considered in this report. The number of detectors
given is the number of detectors running concurrently, and only counting those relevant to the
entire Higgs physics programme. The instantaneous luminosity per detector and the integrated
luminosity provided are those used in the individual reports. For e+e� colliders the integrated
luminosity corresponds to the sum of those recorded by all the detectors. For HL-LHC this is
also the case, while for HE-LHC and FCC-hh it corresponds to 75% of that. The values forp

s are approximate, e.g. when a scan is proposed as part of the programme this is included
in the closest value (most relevant for the Z, W and t programme). For the polarisation, the
values given correspond to the electron and positron beam, respectively. For HL-LHC, HE-
LHC, FCC, CLIC and LHeC the instantaneous and integrated luminosity values are taken from
Ref. [636]. For these colliders, the operation time per year, listed in the penultimate column,
is assumed to be 1.2 ⇥ 107 s, based on CERN experience [636] (this is reduced by a margin of
10–18% in the projections presented for physics results from FCC-ee). CEPC (ILC) assumes
1.3 ⇥ 107 (1.6 ⇥ 107) s for the annual integrated luminosity calculation. When two values for
the instantaneous luminosity are given these are before and after a luminosity upgrade planned.
Abbreviations are used in this report for the various stages of the programmes, by adding the
energy (in GeV) as a subscript, e.g. CLIC380; when the entire programme is discussed, the
highest energy value label is used, e.g. CLIC3000; this is always inclusive, i.e. includes the
results of the lower-energy versions of that collider. Also given are the shutdowns (SDs) needed
between energy stages of the machine; SDs planned during a run at a given energy are included
in the respective energy line.

Collider Type
p

s P [%] NDet Linst/Det. L Time Ref.
[e�/e+] [1034cm�2s�1] [ab�1] [years]

HL-LHC pp 14 TeV – 2 5 6.0 12 [23]
HE-LHC pp 27 TeV – 2 16 15.0 20 [23]
FCC-hh pp 100 TeV – 2 30 30.0 25 [637]
FCC-ee ee MZ 0/0 2 100/200 150 4 [637]

2MW 0/0 2 25 10 1-2
240 GeV 0/0 2 7 5 3

2mtop 0/0 2 0.8/1.4 1.5 5
(1y SD before 2mtop run) (+1)

ILC ee 250 GeV ±80/±30 1 1.35/2.7 2.0 11.5 [342]
350 GeV ±80/±30 1 1.6 0.2 1 [346]
500 GeV ±80/±30 1 1.8/3.6 4.0 8.5

(1y SD after 250 GeV run) (+1)
CEPC ee MZ 0/0 2 17/32 16 2 [509]

2MW 0/0 2 10 2.6 1
240 GeV 0/0 2 3 5.6 7

CLIC ee 380 GeV ±80/0 1 1.5 1.0 8 [638]
1.5 TeV ±80/0 1 3.7 2.5 7
3.0 TeV ±80/0 1 6.0 5.0 8

(2y SDs between energy stages) (+4)
LHeC ep 1.3 TeV – 1 0.8 1.0 15 [636]
HE-LHeC ep 1.8 TeV – 1 1.5 2.0 20 [637]
FCC-eh ep 3.5 TeV – 1 1.5 2.0 25 [637]


