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The Numerical Conformal Bootstrap

e Conformal Field Theories (CFTs) describe 2nd order phase
transitions in condensed matter phys., statistical phys.,
particle phys., string theory

e Bootstrap: constrain and solve CFTs using consistency
conditions (symmetry, unitarity, etc.)

e Numerical bootstrap [rattazzi, Rychkov, Tonni, Vichi '0s]: formulate
inequalities on CFT data and solve them using convex
optimization (e.g. semidefinite programming [poland, DsD, Vichi '11])

CFT data = e.g. critical exponents

Semidefinite solver becomes an oracle that can answer
Q: “is this hypothetical set of CFT data consistent?”
Oracle says no: data disallowed

Oracle says yes: data possibly allowed

Query oracle many times to make an exclusion plot



Numerical Bootstrap Example: O(2) Model
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e O(2) model: superfluid transition in “He, many other systems
e Recent bootstrap computation [chester, Landry, Liu, Poland, DSD, Su, Vichi '19]
o A, =0.519088(22), A, = 1.51136(22), A, = 1.23629(11)
o Aiss/Apss = 1.20932(26), Apss/Agps = 1.82228(11),
Moot/ Aggs = 1.765920(39), ...
e Results support MC, rigorously rule out A-point experiment



Typical computation

Master
e run search algorithm (Mathematica/Haskell /Python)
e submit O(100) — O(1000) jobs

Job O(1) — O(15) nodes/job, ~ 32 cores/node
e compute conformal blocks (C++, embarrassingly ||)
e setup semidefinite program (Mathematica/Haskell/Python)
e run semidefinite solver SDPB (C++)

e parallelized with MPI, uses all O(1)-O(500) cores
e dominates computation time, ~ O(1)-O(100) hours/run

Example: O(2) model computation used 1M CPU-hours on
SDSC'’s Comet cluster, spread over O(100) jobs.



SDPB

SDPB is an open-source semidefinite program solver for the
conformal bootstrap [psp ‘15, [Landry, DSD '19]

Uses a primal-dual interior point method
Parallelized with MPI. Scales well up to hundreds of cores.
Uses arbitrary precision arithmetic. (No GPUs.)

Lots of embarrassingly parallel linear algebra.
However, one global Cholesky solve.

e For efficient scaling, a copy of the global matrix is stored on
each core

e —> memory usage/node grows linearly with cores/node.

o (Can optionally tradeoff memory vs. efficient scaling.)

e Memory/core is currently a bottleneck for attacking larger
problems. (Comet: 24 cores/node, 128GB RAM /node)



Larger Problems/Ideal Machine

e Can choose to study larger sets of observables (4pt correlation
functions).

e More observables = more constraints = larger
semidefinite programs (SDPs) — stronger bounds and
more CFT data.

e Can easily generate SDPs of physical interest that are larger
than what can be solved today. (e.g. SDPs for conformal
window of QCD)

Ideal Machine

e Cluster with queue policies allowing many medium-size jobs

¢ Regular (non-GPU) compute nodes with many cores, and lots
of memory/core



Community Needs

e Currently ~ 10 groups in the US running nontrivial numerical
bootstrap computations.

e Most not yet at the scale of O(2) model, but growing in
number, sophistication, and ambition

e Collectively using ~ 10M-20M CPU-hours/year in the US
[Very rough estimate based on research output, typical
computation size|, mostly on locally-supported clusters, but
moving to larger machines

Over the next few years, these numbers will grow as we attempt
larger problems, and as groups outside high-energy theory (e.g.
condensed matter, statistical physics) bring numerical bootstrap
methods into their toolboxes. Many of us are training students and
writing software to make large-scale bootstrap computations more
accessible.
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