Photonic Crystal (PhC)-based Dielectric Laser Accelerator (DLA)

G. Torrisi* for LoI #142 authors
(see also INFN position paper LoI #44)
*giuseppe.torrisi@lns.infn.it

INFN-LNS, Catania, Italy
University of Catania, Catania, Italy
University of Brescia, Brescia
INFN-LASA, Milano, Italy
INFN-LNF, Frascati, Italy
Politecnico di Milano, Milano, Italy

[LOI discussed also during September AF6 workshop: (https://indico.fnal.gov/event/45651/)
New Acceleration Concepts, Convener: Pietro Musumeci (UCLA)]

Giuseppe Torrisi, Snowmass CPM breakout session 176, Tuesday Oct. 6
Dielectric Laser Accelerators (DLAs)

We require:
1. an optical **Hollow-core** waveguide that is constructed out of **dielectric** materials,
2. transverse **size** on the order of a **wavelength** (~ 1-5 µm)
3. supports a **mode** with **speed-of-light phase velocity** (for electrons).

laser-driven microstructures
- **lasers**: high rep rates, strong field gradients, commercial support
- **dielectrics**: higher breakdown threshold \(\rightarrow\) **higher gradient** (1-10 GV/m) leverage industrial fabrication processes

Goal: lower cost, more compact, energy efficient, higher gradient

Giuseppe Torrisi, Snowmass CPM breakout session 176, Tuesday Oct. 6

• The first experimental demonstration (300 MeV/m) [E. Peralta et al., Nature, vol. 503, no. 7474, 91, 2013].

ACHIP design goals:
• Compact, chip-scale
• High gradient
• Modular accelerator components
• Robust fiber-based laser system
• Modest drive laser energy
• MHz rep rate

Giuseppe Torrisi, Snowmass CPM breakout session 176, Tuesday Oct. 6
LoI Core Ideas:

- **Hollow-core waveguides** for high power handling
- **High interaction impedance** Z_c and accelerating gradient
- **Continuous wave (CW) laser operation** (1-5 µm)
- **Collinear co-propagating laser and beam**
- Sub-wavelength features for **sub-relativistic particles**
- Integrated **nano-proton-source** for proton-DLA

RFQ-like 2D Longitudinal PBG for tabletop proton-DLA

2D Longitudinal Photonic Crystal Directional Coupler

3D Silicon Woodpile mode launcher

3D woodpile mode converter side-coupler

Giuseppe Torrisi, Snowmass CPM breakout session 176, Tuesday Oct. 6
Silicon woodpile waveguide
Fabrication & cold test at scaled mm-wave frequencies

• high speed and precision dicing saws
• silicon wafers 850 µm thick with resistivity > 3 kΩcm
• stacking together 9 silicon layers
• geometrical tolerance of 10 µm

 TEAM
- INFN-LNS, INFN-LNF, UniBs & UniCT: Accelerator design
- PoliMi, Politecnico di Milano: Laser Source
- INFN-LASA: beam dynamics
- C2N, CNRS, Université Paris-Saclay design & manufacturing

Simulated vs Experimental S-parameters

Giuseppe Torrisi, Snowmass CPM breakout session 176, Tuesday Oct. 6
THANK YOU!!

Lol #142
(see also INFN position paper Lol #44)

G. Torrisi1*, L. Celona1, S. Gammino1, G. S. Mauro1, D. Mascali1, G. Sorbello1, 2,
A. Locatelli3, 4, C. De Angelis3, 4,
A. Gallo5, M. Bellaveglia5, M. Diomede5, L. Piersanti5,
G. Della Valle6,
A. Bacci4

*giuseppe.torrisi@lns.infn.it

1INFN-LNS, Catania, Italy
2University of Catania, Catania, Italy
3University of Brescia, Brescia
4INFN-LASA, Milano, Italy
5INFN-LNF, Frascati, Italy
6Politecnico di Milano, Milano, Italy