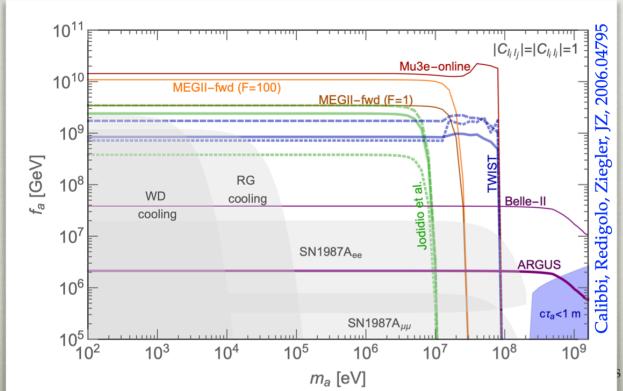

BSM: Direct and indirect Searches Flavor

J. Zupan (U. Cincinnati)

S. Demers (Yale)

INDIRECT SEARCHES

- through indirect searches probe very high scales
- but depends on the assumed flavor structure



LEPTON FLAVOR UNIVERSALITY VIOLATION

- experimental hints in $\frac{b \to c\tau\nu}{b \to c\ell\nu}$ and $\frac{b \to s\mu^+\mu^-}{b \to se^+e^-}$
- theory issues not in these ratios but in:
 - predicting absolute rates and angular observables
 - can one make progress?
 - relating to other observables (either at EFT or UV/simplified model level)
 - other FV transitions, such as $b \to s\tau^+\tau^-,...,s \to de^+\mu^-$,
 - to high p_T observables LFVU using models, how one connects to other phenomena
 - other anomalies (ANITA anomaly, ...)
- is there something we are missing to fully cover all signatures and possible searches in flavor transitions?
 - for example, is there something more we can say in the nonperturbative regime of $b \to c\tau\nu$ models?

CHARGE LEPTON FLAVOR VIOLATION

- $\mu \to e\gamma, \mu \to 3e, \mu \to e$ conv., from dim-6 ops, will reach NP scales of $\sim 10^7 10^8 \text{GeV}$
- $\mu \rightarrow ea$ from dim-5 ops., can reach NP scales ~ 10^{10} GeV
 - higher than astrophysics constraints

see also SNOWMASS21-RF5_RF0_C_Wu-120 SNOWMASS21-RF5_RF6-006

CHARGE LEPTON FLAVOR VIOLATION

- are we making full use of CLFV facilities?
- in principle many more NP scenarios one could search for

SNOWMASS21-RF5_RF0-080

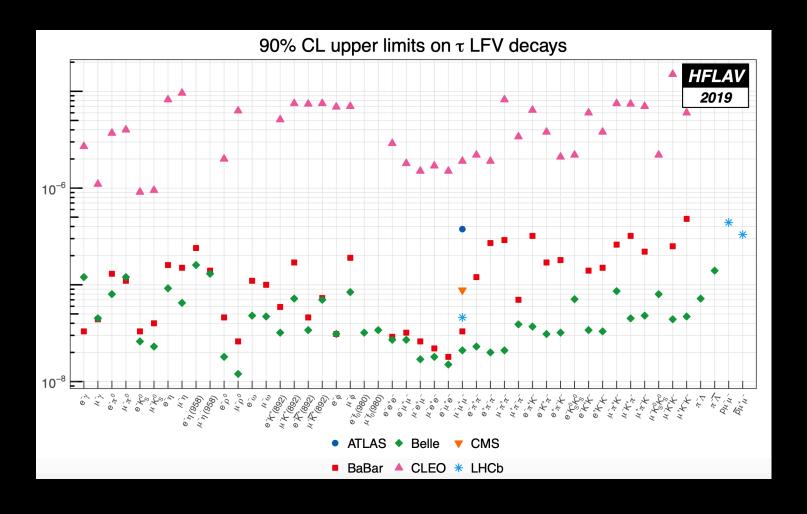
signature $\mu o e \nu X_{
m NP}$ $\mu \to e \nu \bar{\nu} X_{\rm NP}$ $\mu \to e \gamma X_{
m NP}$ $\mu \to eX_{\rm NP}$ $\mu \to e + inv$ $N|_{\mathrm{inv}}$ $a|_{\mathrm{inv}}, \gamma_d|_{\mathrm{inv}}$ $a|_{\mathrm{inv}}, \gamma_d|_{\mathrm{inv}}$ $a, \gamma_d \rightarrow e^+e^ \mu o 3e$ $\mu
ightarrow e \, 2\gamma$ $a o \gamma \gamma$ $N \to \gamma + \text{inv}$ $a, \gamma_d \to \gamma + \text{inv}$ $\mu \to e\gamma + \text{inv}$ $a, \gamma_d \to \gamma + \text{inv}$ $a|_{\mathrm{inv}}, \gamma_d|_{\mathrm{inv}}$ $a \rightarrow e^+e^-\gamma$ $a, \gamma_d \rightarrow e^+e^ \mu o 3e\,\gamma$ $\gamma_d \to 3\gamma$ $a \to \gamma\gamma$ $\mu
ightarrow e + 3\gamma$ $a, \gamma_d \to \gamma \gamma + \text{inv}$ $N \to \gamma + \text{inv}$ $a o 2\gamma$ $\mu \to e2\gamma + inv$ $a, \gamma_d \to e^+e^- + \text{inv}$ $\mu \to 3e + inv$ $N \rightarrow e^+e^-\nu$ $a, \gamma_d \rightarrow e^+ e^-$

CHARGE LEPLON FLAVOR VIOLATION

- any theoretical issues?
 - $\mu \rightarrow e$ conversion
 - bakground from $\mu \to e \nu_{\mu} \bar{\nu}_{e}$ decay in orbit (DIO)
 - BSM interpretation of $\mu \rightarrow e$ conversion :issues of nuclear matrix elements for general interactions
 - searching for $\mu \rightarrow ea$ at Mu2e requires knowledge of DIO
 - anything else?

CLFV: muons

- Questions
 - What facilities are needed?
 - Further advances require high statistics
 - Intense <u>Continuous</u> or <u>Pulsed</u> Beams of Muons
 - What are the limiting Technologies?
 - Fixed Field Alternating Gradient Ring?
 - Production Target: geometries, cooling
 - Transparent Tracking
 - Energy/Momenta/Angular Resolution
 - Precision Timing (<u>MEG II 70 ps -> 35 ps</u>)
 - Calibration and Background Control


...

Interesting Session on Oct 2!

Search for Muonium to Antimuonium Conversion Zoom	Jian Tang 2 12:50 - 13:02
Physics of muonium and anti-muonium oscillations	Alexey Petrov
Zoom	13:02 - 13:14
Searching for muon-to-positron Conversion at Upcoming Experiments and the Process of Radiative Muon Capture	Michael Mackenzie
The MEG II experiment and its future developments Zoom	Angela Papa 🥝 13:26 - 13:38
A new experiment for the mu -> e gamma search	Giovanni Francesco Tassielli
Zoom	13:38 - 13:50
A New Charged Lepton Flavor Violation Program at Fermilab	Robert Bernstein
Zoom	13:50 - 14:02
The Mu2e, COMET and DeeMe experiments	Sophie Middleton
Zoom	14:02 - 14:14
Mu2e-II	Rebecca Chislett
Zoom	14:14 - 14:31
Beam Delivery for Mu2e-II in the PIP-II Era	Eric Prebys
Zoom	14:31 - 14:43
Break	
Zoom	14:43 - 15:04
Theory challenges and opportunities of Mu2e-II	Leo Borrel
Zoom	15:04 - 15:16
Upgraded Low-Energy Muon Facility at Fermilab	Carol Johnstone
Zoom	15:16 - 15:28
A Phase Rotated Intense Source of Muons (PRISM) for a mu-e Conversion Experiment	Jaroslaw Pasternak
Zoom	15:28 - 15:40
CLFV in tau decays	Swagato Banerjee 🥝
Zoom	15:40 - 15:52
Charged Lepton Flavour Violation at the FCC-ee	Mogens Dam
Zoom	15:52 - 16:04
CLFV in heavy state decays	Simone Pagan Griso
Zoom	16:04 - 16:16
Rare muon decays and light new physics	Diego Redigolo @
Zoom	16:16 - 16:28
Discussion	
Zoom	16:28 - 16:50

CLFV: taus

- Experimental Programs at Belle II and LHC(b)
- Some Proposals:
 - <u>Polarized Beams</u> at Belle II
 - <u>FCC-ee</u> at CERN
 - Future tau-charm facilities in China and Russia

 Experimental Challenges: statistics, particle ID (timing detectors?), high detector granularity with energy/momentum resolution and excellent tracking/vertexing, polarized beams

QUARK TRANSITIONS

- same goes for quark transitions, are we covering all possibly interesting signatures?
 - Belle II: bump hunting for new light dark sectors in all possible ways?
 - what can be done with kaons?

SNOWMASS21-RF6_RF0-034

$\begin{array}{llllllllllllllllllllllllllllllllllll$				
$K \to 2\pi + \text{inv} \qquad K \to 2\pi (a/\gamma') \text{ [a,e]} \qquad - \qquad - \qquad K \to \pi\gamma + \text{inv} \qquad s \to d(a \to \gamma\gamma') \text{ [i]} \qquad - \qquad K \to \pi\gamma + \text{inv} \qquad s \to d(a \to \gamma\gamma') \text{ [i]} \qquad - \qquad K \to 2\pi(\pi^0 \to \gamma\gamma') \text{ [e]}$ $K \to 2\pi\gamma + \text{inv} \qquad s \to d(a \to \gamma\gamma') \text{ [a,f]} \qquad - \qquad K \to 2\pi(\pi^0 \to \gamma\gamma') \text{ [e]}$ $K \to \pi\gamma\gamma \qquad s \to d(a \to \gamma\gamma) \text{ [a,f]} \qquad - \qquad $	Signature	$s o dX_{ m NP}$	$s o dX_{ m NP} X_{ m NP}$	$\pi^0 o \gamma X_{ m NP}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K \to \pi + \text{inv}$	$s \to d(a/\gamma')$ [a,e]	$s \to d(aa/\gamma'\gamma'/\bar{N}N)$ [h]	_
$K \to 2\pi\gamma + \text{inv} \qquad s \to d(a \to \gamma\gamma') \text{ [i]} \qquad - \qquad K \to 2\pi(\pi^0 \to \gamma\gamma') \text{ [e]}$ $K \to \pi\gamma\gamma \qquad s \to d(a \to \gamma\gamma) \text{ [a,f]} \qquad - \qquad $	$K \to 2\pi + \mathrm{inv}$	$K \to 2\pi (a/\gamma')$ [a,e]	_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K \to \pi \gamma + \mathrm{inv}$	$s \to d(a \to \gamma \gamma')$ [i]	_	$K o \pi(\pi^0 o \gamma \gamma')$ [e]
$K \to \pi \ell_{\alpha}^{+} \ell_{\alpha}^{-} \qquad s \to d(a/\gamma' \to \ell_{\alpha}^{+} \ell_{\alpha}^{-}) \text{ [a,e]} \qquad - \qquad -$ $K_{L} \to \gamma \gamma + \text{inv} \qquad K_{L} \to \pi^{0} a, \gamma \gamma a \text{ [f]} \qquad K_{L} \to \pi^{0} (aa/\bar{N}N) \text{ [f]} \qquad -$ $K_{L} \to \ell^{+} \ell^{-} + \text{inv} \qquad K_{L} \to \ell^{+} \ell^{-} (a/\gamma') \text{ [g]} \qquad - \qquad -$ $K_{L} \to \ell^{+} \ell^{-} \gamma \gamma \qquad K_{L} \to \ell^{+} \ell^{-} (a \to \gamma \gamma) \text{ [g]} \qquad - \qquad -$ $K^{+} \to \ell_{\alpha}^{+} + \text{inv} \qquad K^{+} \to \ell_{\alpha}^{+} N, \ell_{\alpha}^{+} \nu (a/\gamma') \text{ [b,c]} \qquad - \qquad -$ $K^{+} \to \ell_{\alpha}^{+} \ell_{\beta}^{-} \ell_{\beta}^{+} \qquad K^{+} \to \ell_{\alpha}^{+} \nu (a/\gamma' \to \ell_{\beta}^{+} \ell_{\beta}^{-}) \text{ [b,e]} \qquad - \qquad -$ $+ \text{inv} \qquad K^{+} \to \ell_{\alpha}^{+} (N \to \ell_{\beta}^{+} \ell_{\beta}^{-} \nu) \text{ [d]}$ $K^{+} \to \ell_{\alpha}^{+} \gamma \gamma + \text{inv} \qquad K^{+} \to \ell_{\alpha}^{+} \nu (a \to \gamma \gamma) \text{ [b]} \qquad - \qquad -$ $K^{+} \to \ell_{\alpha}^{+} \gamma \gamma + \text{inv} \qquad K^{+} \to \ell_{\alpha}^{+} \nu (a \to \gamma \gamma) \text{ [b]} \qquad - \qquad -$ $K^{+} \to \pi^{0} \ell_{\alpha}^{+} N \text{ [c]}$	$K \to 2\pi\gamma + \mathrm{inv}$	$s \to d(a \to \gamma \gamma')$ [i]	_	$K \to 2\pi (\pi^0 \to \gamma \gamma')$ [e]
$K_{L} \rightarrow \gamma \gamma + \text{inv} \qquad K_{L} \rightarrow \pi^{0} a, \gamma \gamma a \text{ [f]} \qquad K_{L} \rightarrow \pi^{0} (aa/\bar{N}N) \text{ [f]} \qquad K_{L} \rightarrow \gamma \gamma (aa/\bar{N}N) \text{ [f]} \qquad K_{L} \rightarrow \ell^{+}\ell^{-} + \text{inv} \qquad K_{L} \rightarrow \ell^{+}\ell^{-} (a/\gamma') \text{ [g]} \qquad - \qquad - \qquad K_{L} \rightarrow \ell^{+}\ell^{-} \gamma \gamma \qquad K_{L} \rightarrow \ell^{+}\ell^{-} (a \rightarrow \gamma \gamma) \text{ [g]} \qquad - \qquad - \qquad K_{L} \rightarrow \ell^{+}\ell^{-} + \text{inv} \qquad K^{+} \rightarrow \ell^{+}_{\alpha} N, \ell^{+}_{\alpha} \nu (a/\gamma') \text{ [b,c]} \qquad - \qquad - \qquad K^{+} \rightarrow \ell^{+}_{\alpha} \ell^{-}_{\beta} \ell^{+}_{\beta} \qquad K^{+} \rightarrow \ell^{+}_{\alpha} \nu (a/\gamma' \rightarrow \ell^{+}_{\beta} \ell^{-}_{\beta}) \text{ [b,e]} \qquad - \qquad - \qquad + \text{inv} \qquad K^{+} \rightarrow \ell^{+}_{\alpha} (N \rightarrow \ell^{+}_{\beta} \ell^{-}_{\beta} \nu) \text{ [d]} \qquad K^{+} \rightarrow \ell^{+}_{\alpha} \gamma \gamma + \text{inv} \qquad K^{+} \rightarrow \ell^{+}_{\alpha} \nu (a \rightarrow \gamma \gamma) \text{ [b]} \qquad - \qquad - \qquad K^{+} \rightarrow \pi^{0} \ell^{+}_{\alpha} N \text{ [c]}$	$K o \pi \gamma \gamma$	$s \to d(a \to \gamma \gamma)$ [a,f]	_	_
$K_{L} \rightarrow \ell^{+}\ell^{-} + \text{inv} \qquad K_{L} \rightarrow \ell^{+}\ell^{-} (a/\gamma') \text{ [g]} \qquad - \qquad $	$K \to \pi \ell_{\alpha}^+ \ell_{\alpha}^-$	$s \to d(a/\gamma' \to \ell_{\alpha}^+ \ell_{\alpha}^-)$ [a,e]	_	_
$K_{L} \to \ell^{+}\ell^{-} + \text{inv} \qquad K_{L} \to \ell^{+}\ell^{-}(a/\gamma') \text{ [g]} \qquad - \qquad \qquad$	$K_L \to \gamma \gamma + \text{inv}$	$K_L \to \pi^0 a, \gamma \gamma a \text{ [f]}$	$K_L o \pi^0(aa/\bar{N}N)$ [f]	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$K_L o \gamma \gamma (aa/ar N N)$ [f]	_
$K^{+} \rightarrow \ell_{\alpha}^{+} + \text{inv} \qquad K^{+} \rightarrow \ell_{\alpha}^{+} N, \ell_{\alpha}^{+} \nu(a/\gamma') \text{ [b,c]} \qquad -$ $K^{+} \rightarrow \ell_{\alpha}^{+} \ell_{\beta}^{-} \ell_{\beta}^{+} \qquad K^{+} \rightarrow \ell_{\alpha}^{+} \nu(a/\gamma' \rightarrow \ell_{\beta}^{+} \ell_{\beta}^{-}) \text{ [b,e]} \qquad -$ $+ \text{inv} \qquad K^{+} \rightarrow \ell_{\alpha}^{+} (N \rightarrow \ell_{\beta}^{+} \ell_{\beta}^{-} \nu) \text{ [d]}$ $K^{+} \rightarrow \ell_{\alpha}^{+} \gamma \gamma + \text{inv} \qquad K^{+} \rightarrow \ell_{\alpha}^{+} \nu(a \rightarrow \gamma \gamma) \text{ [b]} \qquad -$ $K^{+} \rightarrow \pi^{0} \ell_{\alpha}^{+} N \text{ [c]}$	$K_L \to \ell^+ \ell^- + \text{inv}$	$K_L o \ell^+ \ell^- (a/\gamma')$ [g]	_	_
$K^{+} \rightarrow \ell_{\alpha}^{+} \ell_{\beta}^{-} \ell_{\beta}^{+} \qquad K^{+} \rightarrow \ell_{\alpha}^{+} \nu(a/\gamma' \rightarrow \ell_{\beta}^{+} \ell_{\beta}^{-}) \text{ [b,e]} \qquad -$ $+ \text{inv} \qquad K^{+} \rightarrow \ell_{\alpha}^{+} (N \rightarrow \ell_{\beta}^{+} \ell_{\beta}^{-} \nu) \text{ [d]}$ $K^{+} \rightarrow \ell_{\alpha}^{+} \gamma \gamma + \text{inv} \qquad K^{+} \rightarrow \ell_{\alpha}^{+} \nu(a \rightarrow \gamma \gamma) \text{ [b]} \qquad -$ $K^{+} \rightarrow \pi^{0} \ell_{\alpha}^{+} N \text{ [c]}$	$K_L o \ell^+ \ell^- \gamma \gamma$	$K_L \to \ell^+ \ell^- (a \to \gamma \gamma)$ [g]	_	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$K^+ \to \ell_{\alpha}^+ + \text{inv}$	$K^+ \to \ell_{\alpha}^+ N, \ell_{\alpha}^+ \nu(a/\gamma')$ [b,c]	_	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$K^+ \rightarrow \ell_{\alpha}^+ \ell_{\beta}^- \ell_{\beta}^+$	$K^+ \to \ell_{\alpha}^+ \nu (a/\gamma' \to \ell_{\beta}^+ \ell_{\beta}^-)$ [b,e]	_	_
$K^+ \to \ell_{\alpha}^+ \gamma \gamma + \text{inv} $ $K^+ \to \ell_{\alpha}^+ \nu (a \to \gamma \gamma)^{\Gamma} [b] $ $- $ $K^+ \to \pi^0 \ell_{\alpha}^+ N [c] $	<i>i</i> - <i>i</i> -	$K^+ \to \ell_{\alpha}^+ (N \to \ell_{\beta}^+ \ell_{\beta}^- \nu)$ [d]		
α	$K^+ \to \ell_{\alpha}^+ \gamma \gamma + \text{inv}$		_	_
$K^+ \to \pi^- \ell_{\alpha}^+ \ell_{\beta}^+ \qquad u\bar{s} \to \ell_{\alpha}^+ (\tilde{N}^* \to d\bar{u}\ell_{\beta}^+) \text{ [i]} \qquad - \qquad -$	α	$K^+ \rightarrow \pi^0 \ell_{\alpha}^+ N$ [c]		
	$K^+ \to \pi^- \ell_\alpha^+ \ell_\beta^+$	$u\bar{s} \to \ell_{\alpha}^{+}(N^* \to d\bar{u}\ell_{\beta}^{+})$ [i]	_	_

OTHER TOPICS

- many classic standard flavor physics observables: $B \bar{B}$ mixing, $B \to \pi \ell \nu$, ...
- is there a way to think of legacy measurements even if lattice QCD/theory is lagging behind and will catch in ~20years
- similar for charm physics: can we guide which measurements are interesting/to be made, even though theory is not there yet?