EFT vs Top Down Approaches

Snowmass Community Planning Meeting: 5-9th October 2020.

Ilaria Brivio (Heidelberg) <u>brivio@thphys.uni-heidelberg.de</u> Daniel Hayden (MSU) daniel.hayden@cern.ch

direct searches

produce new particles at a collider \rightarrow leads to actual **discoveries**

we **need to know** beforehand what the new particle looks like

only works if new particles are **within the energy reach** of the collider

requires high energy

direct searches

produce new particles at a collider \rightarrow leads to actual **discoveries**

we **need to know** beforehand what the new particle looks like

only works if new particles are **within the energy reach** of the collider

requires high energy

indirect searches

look for **the effect** of new particles <u>without</u> necessarily producing them

we **don't need to specify** in detail what we are looking for

gives valuable information even if the new particles are **out of the energy reach**

requires precise measurements

direct searches

produce new particles at a collider \rightarrow leads to actual **discoveries**

we **need to know** beforehand what the new particle looks like

only works if new particles are **within the energy reach** of the collider

indirect searches

look for **the effect** of new particles <u>without</u> necessarily producing them

we **don't need to specify** in detail what we are looking for

gives valuable information even if the new particles are **out of the energy reach**

requires high energy

requires precise measurements

Provocative Statement: "Direct Search" \rightarrow Top Down Approach "Indirect Search" \rightarrow Effective Field Theories (EFT)

Top Down Approach

Status: May 2019

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.2 - 139) \text{ fb}^{-1} \qquad \sqrt{s} = 8, \ 13 \text{ TeV}$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	miss T ∫£ dt[fb Yes 36.1 - 36.7	⁻¹] Limit MD 7.7 TeV		Reference
$\begin{array}{ccc} 2 \gamma & - \\ - & 2 j \\ \geq 1 e, \mu & \geq 2 j \end{array}$	- 36.7			
< J]	- 37.0 - 3.2 - 3.6	Ms 8.6 TeV M _b 8.9 TeV M _{th} 8.2 TeV M _{th} 9.55 TeV	n = 2 n = 3 HLZ NLO n = 6 $n = 6, M_D = 3 \text{ TeV, rot BH}$ $n = 6, M_D = 3 \text{ TeV, rot BH}$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586
$\begin{array}{ccc} 2 \gamma & - \\ \text{multi-channel} \\ q & 0 e, \mu & 2 \text{ J} \\ 1 e, \mu & \geq 1 b, \geq 1 \text{ J}/2\text{ j} \\ 1 e, \mu & \geq 2 b, \geq 3 \text{ j} \end{array}$		Gкк mass 4.1 TeV Gкк mass 2.3 TeV Gкк mass 1.6 TeV gкк mass 3.8 TeV KK mass 1.8 TeV	$ \begin{split} & k/\overline{M}_{Pl}=0.1 \\ & k/\overline{M}_{Pl}=1.0 \\ & k/\overline{M}_{Pl}=1.0 \\ & \Gamma/m=15\% \\ & \text{Tier (1,1), } \mathcal{B}(A^{(1,1)} \rightarrow tt)=1 \end{split} $	1707.04147 1808.02380 ATLAS-CONF-2019 1804.10823 1803.09678
$1 e, \mu \ge 1 b, \ge 1 J/2j$ Y $1 e, \mu - Y$	- 139 - 36.1 - 36.1 Yes 36.1 Yes 36.1 Yes 36.1 - 139 36.1 - 80	Z' mass 5.1 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 3.0 TeV W' mass 6.0 TeV W' mass 3.7 TeV V' mass 3.6 TeV V' mass 2.93 TeV W _R mass 3.25 TeV W _R mass 5.0 TeV	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-10 1801.06992 ATLAS-CONF-2019- 1712.06518 1807.10473 1904.12679
– 2 j 2 e, μ –	- 37.0 - 36.1 Yes 36.1	Λ Λ Λ 2.57 TeV	21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ C_{4t} = 4\pi$	1703.09127 1707.02424 1811.02305
c DM) $0 e, \mu$ $1 - 4 j$ Y $0 e, \mu$ $1 J, \le 1 j$ Y	Yes 36.1 Yes 36.1 Yes 3.2 Yes 36.1	mmed 1.55 TeV mmmed 1.67 TeV M, 700 GeV m_{\phi} 3.4 TeV	$\begin{array}{l} g_{q}{=}0.25, g_{\chi}{=}1.0, m(\chi) = 1 \; {\rm GeV} \\ g{=}1.0, m(\chi) = 1 \; {\rm GeV} \\ m(\chi) < 150 \; {\rm GeV} \\ y = 0.4, \lambda = 0.2, m(\chi) = 10 \; {\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
$\begin{array}{ccc} 1,2\mu & \geq 2j & Y \\ 2\tau & 2b \end{array}$	Yes 36.1 Yes 36.1 - 36.1 Yes 36.1	LQ mass 1.4 TeV LQ mass 1.56 TeV LQ [*] _3 mass 1.03 TeV LQ [*] _3 mass 970 GeV	$\begin{split} \beta &= 1 \\ \beta &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^u \to b\tau) &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^d \to t\tau) &= 0 \end{split}$	1902.00377 1902.00377 1902.08103 1902.08103
$\begin{array}{ccc} 1 \ e, \mu & \geq 1 \ b, \geq 1j & \gamma \\ 0 \ e, \mu, 2 \ \gamma & \geq 1 \ b, \geq 1j & \gamma \end{array}$	36.1 36.1 Yes 36.1 Yes 36.1 Yes 79.8 Yes 20.3	T mass 1.37 TeV B mass 1.34 TeV T _{5/3} mass 1.64 TeV Y mass 1.85 TeV B mass 1.21 TeV Q mass 690 GeV	SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ $\kappa_B = 0.5$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018 1509.04261
1γ 1 j - 1 b, 1 j $3e, \mu$ -	- 139 - 36.7 - 36.1 - 20.3 - 20.3	q* mass 6.7 TeV q* mass 5.3 TeV b* mass 2.6 TeV t* mass 3.0 TeV v* mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	ATLAS-CONF-2019- 1709.10440 1805.09299 1411.2921 1411.2921
	Yes 79.8 - 36.1 - 36.1	N ⁰ mass 560 GeV N _R mass 3.2 TeV H ^{±±} mass 870 GeV H ^{±±} mass 1.22 TeV	$m(W_R) = 4.1$ TeV, $g_L = g_R$ DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \rightarrow \ell\tau) = 1$ DY production, $ g = 5e$	ATLAS-CONF-2018- 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
	2 μ 2 j 3,4 e, μ (SS) –	3,4 e, μ (SS) – – 36.1 3 e, μ, τ – – 20.3	3,4 e, μ (SS) - - 36.1 H ^{±±} mass 870 GeV 3 e, μ, τ - - 20.3 H ^{±±} mass 400 GeV - - 36.1 multi-charged particle mass 1.22 TeV	3,4 e, μ (SS)36.1H ^{±±} mass870 GeVDY production3 e, μ, τ 20.3H ^{±±} mass400 GeVDY production, $\mathcal{B}(H_L^{\pm\pm} \to \ell\tau) = 1$

- Key Idea: If new physics is directly observable at the LHC, should be seen as a resonance or broad excess/deficit.
- LHC experiments cover many different final states with dedicated searches for specific models.

Top Down Approach

• Are efforts in both ATLAS and CMS to bring these separate searches together into a more general framework.

Top Down Approach

• Are efforts in both ATLAS and CMS to bring these separate searches together into a more general framework.

- Rather than simply setting limits on xsec and mass, also make statement about SM coupling.
- Still not truly agnostic (Spin-0/2, non-resonant, complex structure)
- Searches != Precision Measurements

Limitations

Figure 1-26. Upper cross-section limits for the process $q\bar{q} \rightarrow Z' \rightarrow e^+e^-$, set at 95% CL using a Bayesian statistical interpretation given 3000 fb⁻¹ of data collected at $\sqrt{s} = 14$ TeV. Various signal scenarios are overlayed, with mass exclusion limits extracted at the intersection of the theory-expected lines.

Limitations

Figure 1-26. Upper cross-section limits for the process $q\bar{q} \rightarrow Z' \rightarrow e^+e^-$, set at 95% CL using a Bayesian statistical interpretation given 3000 fb⁻¹ of data collected at $\sqrt{s} = 14$ TeV. Various signal scenarios are overlayed, with mass exclusion limits extracted at the intersection of the theory-expected lines.

Limitations

Figure 1-26. Upper cross-section limits for the process $q\bar{q} \rightarrow Z' \rightarrow e^+e^-$, set at 95% CL using a Bayesian statistical interpretation given 3000 fb⁻¹ of data collected at $\sqrt{s} = 14$ TeV. Various signal scenarios are overlayed, with mass exclusion limits extracted at the intersection of the theory-expected lines.

EFT Approach

- Key Idea: If new physics is characterized by a very large energy scale Λ (particle mass / compositeness scale / ...), it's impact at the LHC can be described by an EFT.
- Pros of EFT Approach:
 - Model independent, within assumptions.
 - Do not need knowledge of UV model to make predictions.
 - Better than just anomalous couplings, as it's a full QFT.
 - Gives a systematic classification of all possible BSM effects.
 - Gives access to physics beyond LHC reach.

An EFT for BSM searches: The SMEFT

fundamental assumptions: \blacktriangleright new physics nearly decoupled: $\Lambda \gg (v, E)$

at the accessible scale: SM fields + symmetries

An EFT for BSM searches: The SMEFT

fundamental assumptions: \blacktriangleright new physics nearly decoupled: $\Lambda \gg (v, E)$

at the accessible scale: SM fields + symmetries

Taylor expansion in canonical dimensions ($\delta = v/\Lambda$ or E/Λ):

$$\mathcal{L}_{\rm SMEFT} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda}\mathcal{L}_5 + \frac{1}{\Lambda^2}\mathcal{L}_6 + \frac{1}{\Lambda^3}\mathcal{L}_7 + \frac{1}{\Lambda^4}\mathcal{L}_8 + \dots$$

 $\mathcal{L}_{n} = \sum_{i} C_{i} \mathcal{O}_{i}^{d=n} \qquad C_{i} \text{ free parameters (Wilson coefficients)}$ $\mathcal{O}_{i} \text{ invariant operators that form}$ a complete, non redundant basis

What precision is needed?

A back-of-the-envelope estimate:

on poles NP impact
$$\sim \frac{v^2 g}{M^2} = \frac{v^2}{\Lambda^2}_{\text{EFT cutoff}}$$

mass of new
resonances
 $g \simeq 1 \quad M \gtrsim 2 - 3 \text{ TeV} \rightarrow \frac{1\%}{1\%}$ at least!
on tails NP impact $\sim \frac{E^2 g}{M^2} = \frac{E^2}{\Lambda^2} \rightarrow \text{ few - tens \%}$

What precision is needed?

A back-of-the-envelope estimate:

Pole and tails are complementary!

Current Measurements & HL-LHC Projections

<u>Link</u>

17

Current Measurements & HL-LHC Projections

Status in Global Fits

Status in Global Fits

20

Some Starter Questions for Discussion...

- 1.How does the EFT reach, in terms of new physics scale, compare to that of direct searches?
- 2.What is the precision needed for EFT to do better than Top Down?
 - Which measurements can realistically expect this?
- 3.Is there any regime where the two approaches overlap?
 - If so, how can this complementarity be best exploited?
 - Otherwise, is there a blind spot?
- 4.How can we better control the large theory uncertainties which limit both approaches? Is one approach more resilient?
- 5. Can searches performed with the Top Down approach in mind be easily cast into EFT?
 - Could be useful for where precision measurements do not exist.