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Introduction

W0

* Plasma lenses provide strong, axisymmetric focusing.

* Active plasma lenses (APL) have emerged as a critical tool in
advanced accelerator technologies, specifically in LWFA staging.

* Passive plasma lenses (PPL) have been theorized as a route to the
Oide limit and were experimentally tested at SLAC in the early 2000s.

* |n this talk:
- What are the merits of plasma lenses?

- What are the drawbacks/limitations?
- What role can they play in a future collider?
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Over the last roughly five years, the so-called active plasma lens (APL) has garnered substantial
interest in the context of particle beam optics. They offer the opportunity for extremely high
gradient transverse focusing of charged particle beams which is simultaneously radially symmetric
and highly tunable. Combined, these features of the APL represent a substantial advantage
compared to conventional magnetic quadrupoles.
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Introduction

Plasma lenses can focus electron beams with strengths several orders of magnitude stronger than
quadrupole focusing magnets [1-3]. The transverse force in the underdense, nonlinear blowout plasma
wake regime is due to the presence of the stationary plasma ions. If the transverse density profile of this ion
column is uniform, then the focusing force experienced by the electrons in a relativistic beam is both
axisymmetric and linear with an electron's transverse displacement relative to the plasma wake's azimuthal
axis of symmetry. These properties lead to an aberration-free focus of the electron beam that can achieve
unprecedented small beam spots. The first order beam dynamics are simple to model and have been
described in [1].

S. Barber et. al.
https://www.snowmass21.org/docs/file
s/summaries/AF/'SNOWMASS?21-
AF6 AFO Barber-196.pdf

C. Doss et. al.
https://www.snowmass?21.org/docs/fi

les/summaries/AF/'SNOWMASS21-
AF6-011.pdf
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Active Plasma Lenses

A

An active plasma lens is made from a gas filled
capillary with electrodes at either end. A large
voltage is applied which ionizes the gas in the
capillary and drives a current through the
plasma. The advantages of the APL can be
seen immediately:

ITkA]] T /m

IAPL = 20 Rl

The field gradient is independent of r (just like a

quadrupole), and it provides simultaneous
focusing of the x and y planes.

Plasma lenses offer field gradients of order 10
times greater than the strongest PMQs
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Active Plasma Lenses
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An active plasma lens is made from a gas filled
capillary with electrodes at either end. A large
voltage is applied which ionizes the gas in the
capillary and drives a current through the
plasma. The advantages of the APL can be
seen immediately:
ITkA]]

gAPL = 200—(R[mm])2 T/m
The field gradient is independent of r (just like a
quadrupole), and it provides simultaneous
focusing of the x and y planes.

Plasma lenses offer field gradients of order 10
times greater than the strongest PMQs
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Important point #1:

round and flat beams.

The focusing does not depend on
the beam shape. Works for both

J. van Tilborg et. al., PRL115,184802 (2015)



Active Plasma Lenses
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J. van Tilborg et. al., PRL115,184802 (2015)



Do they work?
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Yes!

The APL is placed close to the
first stage to capture the beam

Plasma
lens

Stage I
gas jet Plasma-mirror

tape

190 | NATURE | VOL 530 | 11 FEBRUARY 2016
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doi:10.1038/nature16525

Multistage coupling of independent laser-plasma
accelerators
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The APL was a critical component of the LWFA staging experiment at Berkeley.




Do they preserve emittance?
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PHYSICAL REVIEW LETTERS 121, 194801 (2018)

Yes!

(C) current waveform (a) He/Ar . .. . .
o Polymer Electron Emittance Preservation in an Aberration-Free Active Plasma Lens
Gas flow window Quadrupole bunch
S0 e | regulator triplet + 1 2 3 4 3 45
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What else are they good for?
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Phosphor

Infinite

Tube lens Conjugate lens
cco Relay lens

Because APLs are much smaller than an
equivalent quadrupole triplet, they allow for
compact diagnostics of beams from laser
wakefield accelerators.

"

Applied Physics Letters ARTICLE

scitation.org/journal/apl

A compact, high resolution energy, and emittance
diagnostic for electron beams using active plasma
lenses ®

Cite as: Appl. Phys. Lett. 116, 234108 (2020); doi: 10.1063/5.0005114
Submitted: 18 February 2020 - Accepted: 26 May 2020 -
Published Online: 11 June 2020 e Beon i
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Challenges for APLs
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* The main assumption of the APL is that the focusing comes entirely from the

plasma current. There is no plasma wakefield. This implies n, < ng, where n, is
the beam density and ng is the density of the gas (plasma) in the capillary.

* If beam density is comparable to the plasma density, the beam drives a wake with
a ¢-dependent transverse focusing force.

* How “bad’” is this effect? The answer is complicated because there are many
parameters to be considered!
- Bunch length, bunch radius, bunch charge, plasma density, APL current, APL radius

* Finally, what is the contribution to beam emittance due to scattering in the APL?



Emittance Growth due to Scattering

The change is RMS divergence due to scattering is given by*:

d(62) _ 2k>reZ log Ap
0z ¥2

R

For the case we are considering, the beam is not matched to the plasma, so
we simply use the betafunction in the APL to calculate the change in
emittance:

R

Oz, B (%) 5/€§T€Z1 AD
0z 2 0z ©8

Two factors limit the emittance growth: high energy and small betas.

*C. B. Schroeder, et. al. Phys. Rev. ST Accel. Beams 13, 101301 (2010)



Wakefield Limitations in APLs
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A study by C. Lindstrom and E. Adli e e e o e
] @ and a capillary diameter 100 (but at least 250 1m) ® Corregponding active plasma lens gradient 000
looked at active plasma lenses for o
3- 1000 ;.L 1000 10 O ILCTDR: 111 ;m, 649 Tim

CLIC 0.5 TeV : 132 um, 462 T/m

O CLIC3TeV:125,m, 508 T/im

O PWFA-LC:303 um, 87 T/m

O LPALC1:422 ym, 45 Tim
LPA-LC 2:190 um, 221 Tim
LHC : 20 sm, 12800 T/m

Linear Collider final focus systems,
with the assumption that the focusing SNl |
due to the wakefield is much smaller U " s
than focusing of the APL.

2
8

five plasma lens gradient (T/m)

Bunch charge (pC)

Minimum rms beam siz
5

um act

Collider ILC CLIC CLIC PWFA-LC LP-LC LP-LC LHC
TDR 0.5 TeV 3TeV 1TeV Ex.1 Ex.2 13 TeV
Final beam energy (GeV) 250 250 1500 500 500 500 6500
. Charge per bunch (pC 3200 1088 595 1600 480 160 18400
They find that the beam must have a 5 s fumy 0 om0 1 et
. Normalized emittance, x/y (pm rad) 10/0.035 2.4/0.025 0.66/0.02 10/0.035 1/0.01 1/0.01 3.75
Iarge tra nsverse size and Considerations for an active plasma lens with 1 kA discharge current and a minimum diameter 250 pm
Min. beam size for negligible (< 3%) wake (um) 111 132 125 303 422 190 20

. . Max. APL gradient with negligible wake (T/m) 649 462 508 87 45 221 12800
betafunction when enterlng the APL. Required beta function y/B,f,, final energy (m) 1.0x10* 3.5x10° 4.0x10° 1.5x10°  1.7x10° 3.5x10° 0.74

The large betafunction leads to emittance growth
due to scatterlng in the APL Snc.)w.mass IS an C. Lindstrom, E. Adli, “Analytic plasma wakefield limits
excellent forum for examining this issue. for active plasma lenses” [arXiv:1802.02750], 2018.
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Passive Plasma Lenses

* In a passive plasma lens (PPL), the focusing is provided by the wakefield.

* There are two regimes for PPLs:
- Overdense n, K ng: The beam drives a linear wakefield, which is focusing for some
phases of the wake.
- Underdense n, > ng: The beam drives a non-linear wakefield and an ion bubble forms.
The focusing is provided by the plasma ions. Note that lasers can also be used to drive

underdense PPLs (see for example: C. Thaury et. al. Nat. Comm. 6:6860).

* The benefit of the overdense regime is that it works for electrons and positrons,
but it has many drawbacks because it is hard to tailor the beams to create
wakes which provide uniform focusing.

* We will focus on the underdense (blowout) regime.



Passive Plasma Lenses

The nominal blowout regime produces an
ion bubble which focuses electron beam
particles.

We assume that the electron driver is
transversely large and creates a wide
bubble which reduces sensitivity to small
offsets between the beam and driver.

We can derive an engineering formula for the

Applying Gauss’s law to the ions in the field gradient of a PPL in the blowout regime:
bubble gives: engr gppr, = 30 no[10'® cm ™3] MT/m
E. =
2€0 This is at least 3 orders of magnitude larger

than APLs in use today.



Passive Plasma Lenses

Important point #1:

The focusing for the witness
beam does not depend on the
witness beam shape. Works for
both round and flat beams.

Important point #2:

Because we are operating in the
blowout regime, the wakefield is
saturated. We are not concerned
about the withess beam being
“too dense.”

Important point #3:

This does not work for positron
beams. ¢




Do they work?
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Yes*

*Modern PWFA experiments operate in the
blowout regime. The bubble acts as a lens and
keeps the beam focused as it transits the plasma.
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Challenges for PPLs

"

Offset considerations

The PPL requires a driver to create the wake. If
there is an offset between the drive and the
witness, this will lead to the witness beam exiting
the plasma at an angle and “missing” the IP.

This problem has been studied in detail:
- G. R. White, T. O. Raubenheimer, “TOLERANCES

FOR PLASMA WAKEFIELD ACCELERATION These studies conclude that

DRIVERS” WEYBA3, NAPAC 2020. “heroic” ali (i ded
- G. R. White, T. O. Raubenheimer, “TRANSVERSE eroic alignment IS neede

JITTER TOLERANCE ISSUES FOR BEAM-DRIVEN to avoid missing the IP.
PLASMA ACCELERATORS’” THPGWO087, IPAC 2020.




Possible solution: Finite plasma colum

If plasma is limited to a finite region of
space (produce by a jet orin a
capillary), and the driver is wide
compared to the capillary, then the
relative offset between the driver and
witness is not important.

There is still the issue of the offset of
the witness bunch w.r.t. the ion column,
but the same is true of a beam entering
FF magnets.



With L* = 22 cm, the plasma
lens will be inside the detector.

What kind of backgrounds will
the plasma lens produce?

How do we isolate the plasma
to a finite region inside the
detector?

Dude running because holy crap
they’re about to turn on a 1 TeV beam.



D. Storey, SLAC

Differential Pumping at FACET-II
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Experiments at FACET-lI
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Mike Litos from CU Boulder is leading the E308
experiment at FACET-Il which will investigate thin,
passive plasma lenses (TPL).

The first stage of the experiment will study the
optimization of beam matching into and out of the
plasma accelerator.

The second stage of the experiment will
investigate the focusing and chromatic properties

PHYSICAL REVIEW ACCELERATORS AND BEAMS 22, 111001 (2019)

Laser-ionized, beam-driven, underdense, passive thin plasma lens

C.E. Doss®,"" E. Adli,2 R. Ariniello®,' J. Cary®,"* S. Corde®," B. Hidding,>® M. J. Hogan®,”
K. Hunt-Stone,' C. Joshi,® K. A. Marsh,® J. B. Rosenzweig,9
N. Vafaei-Najafabadi,'® V. Yakimenko,” and M. Litos'
"University of Colorado Boulder, Department of Physics, Center for Integrated Plasma Studies,
Boulder, Colorado 80309, USA
2University of Oslo, Department of Physics, 0316 Oslo, Norway
3Tech-X Corporation, Boulder, Colorado 80301, USA
ALOA, ENSTA Paris, CNRS, Ecole Polytechnique,
Institut Polytechnique de Paris, 91762 Palaiseau, France
SScottish Universities Physics Alliance, Department of Physics, University of Strathclyde,
Glasgow G4 ONG, United Kingdom
bCDL‘kCYOfT Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury,
Cheshire WA4 4AD, United Kingdom
"SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
SUniversity of California Los Angeles, Department of Electrical Engineering,
Los Angeles, California 90095, USA
qutiversity of California Los Angeles, Department of Physics and Astronomy,
Los Angeles, California 90095, USA
"Stony Brook University, Department of Physics and Astronomy, Stony Brook, New York 11794, USA

®™  (Received 20 August 2019; published 7 November 2019)

‘We present a laser-ionized, beam-driven, passive thin plasma lens that operates in the nonlinear blowout
regime. This thin plasma lens provides axisymmetric focusing for relativistic electron beams at strengths
unobtainable by magnetic devices. It is tunable, compact, and it imparts little to no spherical aberrations.
The combination of these features make it more attractive than other types of plasma lenses for highly
divergent beams. A case study is built on beam hing into a plasma wakefield acci at SLAC
National Accelerator Laboratory’s FACET-II facility. Detailed simulations show that a thin plasma lens
formed by laser ionization of a gas jet reduces the electron beam’s waist beta function to half of the
minimum value achievable by the FACET-II final focus magnets alone.

of the TPL in the context of a FF-type application.




Last thing: Beating the Oide Limit
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The O|de ||m|t SayS that If yOU bend the VOLUME 64, NUMBER 11 PHYSICAL REVIEW LETTERS 12 MARCH 1990

beam too hard in the FF magnets, it will Plasma-Based Adiabatic Focuser

P. Chen and K. Oide®
. . ] Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309
radiate like crazy and increase the energy -
spread of the beam, leading to a larger spot 5.5.vu
Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550

Lawrence Berkeley Laboratory, Berkeley, California 94720
size. The limit is a function of the incoming

Theoretical analysis is made of an intense relativistic electron beam moving through a plasma of in-

* —
Oymin —

. creasing density, but density always less than that of the beam (underdense). Analysis is made of the
bea m e m Itta n Ce : beam radiation energy loss and it is noted that the focuser is insensitive to the beam energy spread due to
275 7
* 5/7
== X F(NKL,VKI*) | (en,)”

radiation loss. Furthermore, because of the scaling behavior in the nonclassical regimes, the radiation
7 1/2
5 3Vér

limit on lenses (the Oide limit) can be exceeded.
In the paper by Chen et. al., they propose to

1/3
beat this limit by making the beam radiate i Og > [7‘2‘ Xce2(1+a)

the quantum regime. ol X 1/3
Xexp | —3 YRR
This is achieved by making the beam as small (1+ag)® a’en
as possible at the entrance of the plasma lens.




Conclusion

* Recent experiments have shown the usefulness of Active Plasma Lenses.
- Critical tool for inter-stage coupling in a laser wakefield accelerator.
- Allows for novel, compact emittance diagnostics.
- Demonstrated to be emittance preserving.

* Passive Plasma Lens in the underdense regime have attractive properties
for beam matching into and out of plasma stages, and they scale well to

the high energies needed for Final Focus designs.
- Experiments are planned at FACET-II.
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