Proposal for a new experiment using a Laser and XFEL to test quantum physics in the strong-field regime

Beate Heinemann (DESY and University of Freiburg)

Snowmass Meeting, October 7th 2020
COLLIDING HIGH ENERGY PHOTONS/ELECTRONS WITH INTENSE LASER

17 GeV electrons from LINAC of European XFEL

Goal: Probe quantum physics in novel regime
• Observe transition from perturbative to non-perturbative regime
• Compare with calculations

Letter of Intent for the LUXE Experiment

H. Abramowicz¹, M. Altarelli², R. Assmann³, T. Behnke³, Y. Benhammou¹, A. Borysov⁴, M. Borysova⁴, R. Brinkmann³, F. Burkard³, O. Davidi⁵, W. Decking³, N. Elkina⁶, H. Harsh⁷, A. Hartn⁷, I. Hartl⁷, B. Heinemann¹,², T. Heinzi⁷, N. Tal Hod², M. Hoffmann², A. Ilderton¹, B. King⁸, A. Levy¹, J. List¹, A. R. Maier¹⁰, E. Negodin¹, G. Perez³, I. Pomerantz¹, A. Ringwald¹, C. Rödel¹, M. Saimpert¹, F. Salgado¹, G. Sarri¹¹, I. Savoray¹, T. Teter⁷, M. Wing⁸, and M. Zepl¹¹,¹²

Released on Sept. 2nd 2019
arXiv:1909.00860

36 scientists
12 institutes
4 countries
(+several new institutes since LOI)
High energy electron or photon interacts with laser
- Also higher order process $e^- + n\omega_L \rightarrow e^- e^+ e^-$
- Observed by E144 experiment in perturbative regime
Quantum parameters:
\[\chi_e = (1 + \cos \theta) \frac{E_e \mathcal{E}_L}{m_e \mathcal{E}_{cr}}\]
\[\chi_\gamma = (1 + \cos \theta) \frac{E_\gamma \mathcal{E}_L}{m_e \mathcal{E}_{cr}}\]

Intensity parameter:
\[\xi = \sqrt{4\pi \alpha} \left(\frac{\mathcal{E}_L}{\omega L m_e} \right) = \frac{m_e \mathcal{E}_L}{\omega L \mathcal{E}_{cr}}\]

Planning laser for upgrade to 300 TW from start
• **Prediction for rate of positrons per laser shot**

\[\xi \ll 1: \quad R_{e^+} \propto \xi^{2n} \propto I^n \]

- Perturbative regime: strong rise, follows power-law

\[\xi \gg 1: \quad R_{e^+} \propto \chi_\gamma \exp \left(-\frac{8}{3\chi_\gamma} \right) \]

- Non-perturbative regime: departure from power-law
• Detection of electrons, positrons and photons
• System of silicon pixel tracking, silicon tungsten calorimeters and Cherenkov detectors
• Particle fluxes vary between ~ 0.01 and 10^9 per laser shot!

TWO RUNNING MODES OF LUXE
Example for possible result of experiment

Low laser intensity
• Encounter power-law behaviour

High intensity
• Should observe deviation from power-law behaviour
• Aim to quantify by extracting coefficient
CONCLUSIONS

• LUXE will boil the vacuum using a minute fraction of European XFEL electron beam
 • Measure several phenomena predicted more than 60 years ago
 • Test quantum field theory in a new regime
• International collaboration of performed feasibility study
 • “Letter of Intent” released in September 2019
 • Currently preparing Conceptual Design Report
• Only possible in synergy between accelerator, laser and particle physicists

S. Weinberg: “My advice is to try crazy ideas and innovative experiments. Something will come up.”