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Goal:

e Give Instrumentation Frontier a taste for problems in 21cm intensity mapping



Key cosmological science drivers as a function of
redshift and the scale of clustering
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CF5/1F7 overlap LOls

General science cases referencing LIM/21cm IM

223 Probing Physics at the Highest Energy Scales with Primordial Features
64 Cosmological Collider: Precision calculation and probes of new physics

Instruments, sorted by wavelength 5m to <1 mm

211 Cosmic dawn: A probe of dark matter at small scales

212 A 21-cm based standard ruler at z ~ 20

27 Packed Ultra-wideband Mapping Array (PUMA): Science Opportunities
242 Cosmology with Millimeter-Wave Line Intensity Mapping



21cm emission

Hyperfine transition in neutral
hydrogen at v=1420MHz, A=21.1cm;
This is the only transition around -- if
you see a line at 710MHz, it is a z=1
galaxy;

(not true in optical)

Universe is mostly hydrogen (75%),
but at low redshift we are sensitive to
pockets of neutral hydrogen in
galaxies;

21cm surveys are galaxy surveys in
radio frequencies
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We build massive interferometric radio arrays
Interferometers are combination software/hardware telescopes
that need to be thought of as an integrated system

CHIME (taking data): HERA (taking data with ~100 PUMA (proposed):
1024 dual-pol feeds, dishes now): 350 dual-pol 5000-32000 dual-pol
400-800MHz, dishes, 80-200MHz (6<z<17) dishes, 200-1100 MHz
(0.8<z<2.6) (0.3<z<6)



Conventional techniques do not deliver the exquisite
evels of systematics control (through the entire
nardware/software pipeline) needed to overcome the
nigh dynamic range necessary for precision
constraints
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Highest priority Technology Challenges:

21-cm intensity mapping

» Direct, sub-ps synchronized digitization at each of the ~1000 dishes
separated by up to a km

 EM simulation and measurement to 1:1e5 and 2x fractional bandwidth

» New network technologies that can process tens of petabytes of raw data
per second with modest power consumption, and lower development cost

» Synergistic with streaming DAQ development for collider applications

» Real-time calibration per dish: embedded noise calibrators, real-time
correction

* Folding precise monitoring and systematics characterization through the
analysis pipeline



Technical Challenge: integrated front-end

e Front-end amplifiers, digitizer, channelizer
e Current set-ups use individual components

e \We want an integrated solution:
o In: radio wave in air
o  Out: digital signal out on optical cable (waveform or channelized)
o low power, low cost, must also be able to sing a song

e Solutions should be available with recent RFSoC advances

e Must integrate:

Broadband feed and OMT

Low-noise amplifiers

Multi-Gsample/s digitizer (with clock synchronization decoder)
(perhaps polyphase filterbank channelizer)

Formatting onto ethernet frames

Careful RFI mitigation
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Technical Challenge: clock distribution

e Clock distribution across km with pico-second synchronization
e Synergies with other IF problems, BRN “breaking the pico-second barrier”

e Synergies beyond HEP:
o LIDAR
o Advanced light sources
o  Quantum key distribution

LCLS-II Askaryan Radio Array sub-mm resolution LIDAR




Technical Challenge: Dish + feed construction /
evaluation

e Dishes need to be cheap but very well understood. (Sometimes
precision more important than accuracy)

e In dish arrays experience has shown significant amount of
dish-dish coupling

e Due to high-dynamic range, the dish surface needs to be better
than for usual applications, but how much better still unclear

e With thousands of dishes, a per-element cost must be in $1k
range.

e Need for a comprehensive program of:
o  Dish construction techniques
o EM modelling (including simulations of dishes embedded within a large array)
o Quality assurance and repeatability monitoring




Technical Challenge: in-situ primary beam calibration

e \/arious schemes with UAV with emitters

have been tried:

o Typical quadcopters, but also fixed-wing
o Pulsar gating with large dish also a possibility

e No one has managed to make these
systems operate at desired accuracy

e Known issues:
o Positioning with differential GPS

o Calibration signal drifts, emitting antenna position External and internal calibration sources are both
) . : ) necessary to measure electromagnetic response to
o Data reduction with fast-changing signals 1e5. Pictured here is the ECHO drone mapping Long

I i : Wavelength A in NM.
e All surmountable and interesting technical aveleng Arayn

problems



Technical Challenge: Real-Time signal processing

e The primary throughput of these systems is truly 2018.09-01T00:26:47.025000

enormous:
o 2Gs/s x 5000 antennas at 8 bit sampling = 10 TB/s
o This is controlled by a massive real-time data reduction
(correlator and post processor)

e Real time data compression requires:
o real-time calibration: all the complex gains must be correct
o exquisite system phase stability
o computational power to perform calibration

e Design and operation of such self-calibrating FFT Example of utpu fom the EPIC FFT
correlator is part of active research imager on the LWA.

This is an all sky image of a single
voltage sample from 256 antennas,
computed in real time.




Everything is challenging, but this is an opportunity
to achieve compelling science and push radio
Instrumentation to new frontiers
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This is one of many crucial probes in the spirit of
“cross-correlate everything with everything else”

HI, [ClI] (e.g., LOI 242), CO,
hydrogen lines, galaxy
surveys, CMB...




More modes gets us better constraints on
nonGaussianity = better probe of inflation
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Summary

e Science from next-generation 21cm interferometers is in-line

with DOE CF science goals, and has access to:
o More modes, and hence better measurements, of inflation in the
form of non-Gaussianity
o New probes like VAOs and Dark Matter in the early Universe
o Combinations of cosmo probes (optical, other lines, CMB) to map
full 3D history of the Universe
e Instrumentation challenges for next-generation 21cm

interferometers:

o Synergistic with other frontiers: ps timing, fast digitization,
networking, and signal processing with real-time correction

o Potential areas of overlap for radio feed/dish development at
large scales with high precision and repeatability

o Related: we need full simulated systematics pipeline to further
develop requirements, understand how we know we achieved
them, and ideally be used in the science analysis
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