AF Implementation Task Force

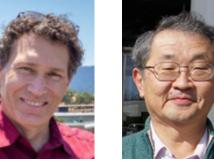
Thomas Roser for the Implementation Task Force

Snowmass Community Planning Meeting October 7, 2020

AF Implementation Task Force

- One of the key goals of the Snowmass'21 Accelerator Frontier is to address the question "... What are the time and cost scales of the R&D and associated test facilities as well as the time and cost scale of the facility?"
- A large number of accelerator projects are being considered and/or developed as part of the Snowmass'21 effort. Examples include: ILC, a Muon Collider, gammagamma and ERL options, a large circumference electron ring, and a large circumference hadron ring amongst others.
- One of the challenges for the Accelerator Topical groups will be to compare the expected cost scales, schedule, and R&D status for the projects as they will be at varied stages of development and possibly proposed using different accounting rules.
- The Accelerator Implementation Task Force is charged with developing metrics and processes to facilitate such a comparison between projects.

Steve Gourlay (LBNL)


Philippe Lebrun (CERN)

Thomas Roser (BNL, Chair)

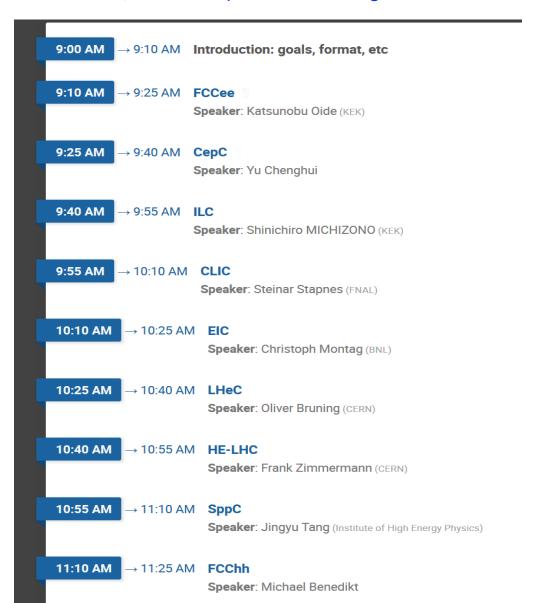
Tor Raubenheimer (SLAC)

Katsunobu Oide (KEK)

Jim Strait (FNAL)

Vladimir Shiltsey (FNAL)

Reinhard **Brinkmann** (DESY)


John Seeman (SLAC)

Charge items

- 1. Develop the metrics to compare projects' cost, schedule/timeline, technical risks (readiness), operating cost and environmental impact, and R&D status and plans;
- 2. Select the accelerator projects to be evaluated (provided by the AF topical groups);
- 3. Work with the proponents of the selected accelerator projects to evaluate them against the metrics from item 1;
- 4. Consider the ultimate limits of various types of colliders: e+/e-, p/p, mu+/mu-;
- 5. Consider limits and timescales due to accelerator technology for various types of colliders: e+/e-, p/p, mu+/mu-;
- 6. Lead the evaluation of the different HEP accelerator proposals and inform and communicate with the Snowmass'21 AF, EF, NF and TF;
- 7. Document the metrics, processes, and conclusions for the Snowmass'21 meeting in the Summer 2021; write and submit a corresponding White Paper.

AF-EF Initial workshop on future facilities

June 24, 2020: https://indico.fnal.gov/event/43871/

July 1, 2020: https://indico.fnal.gov/event/43872/

Example of an existing comparison table

• V. Shiltsev and F. Zimmermann (arXiv:2003.09084v1 [physics.acc-ph] 20 Mar 2020)

Project	Type	Energy	$N_{ m det}$	$\mathcal{L}_{\mathrm{int}}$	Time	Power	Cost	$\mathrm{Cost}/\mathcal{L}_{\mathrm{int}}$	$\mathcal{L}_{\mathrm{int}}/\mathrm{Power}$
		(TeV, c.m.e.)		$\left(\mathrm{ab}^{-1}\right)$	(years)	(MW)		$\left (BCHF/ab^{-1}) \right $	$\left (ab^{-1}/TWh) \right $
ILC	e^+e^-	0.25	1	2	11	129	4.8-5.3BILCU	2.7	0.24
		0.5	1	4	10	163(204)	8.0 BILCU	1.3	0.4
		1	1			300	+(n/a)		
CLIC	e^+e^-	0.38	1	1	8	168	5.9 BCHF	5.9	0.12
		1.5	1	2.5	7	370	+ 5.1 BCHF	3.1	0.16
		3	1	5	8	590	+7.3 BCHF	2.0	0.18
CEPC	e^+e^-	0.091&0.16	2	16+2.6	2+1	149	5 B USD	0.27	7.0
		0.24	2	5.6	7	266	+(n/a)	0.21	0.5
FCC-ee	e^+e^-	0.091&0.16	2	150+10	4+1	259	10.5 BCHF	0.065	20.5
		0.24	2	5	3	282		0.064	0.9
		0.365 & 0.35	2	1.5+0.2	4+1	340	+1.1 BCHF	0.07	0.15
LHeC	ep	1.3	1	1	12	(+100)	$\mid 1.75^* \text{ BCHF} \mid$	1.75	0.14
HE-LHC	pp	27	2	20	20	220	7.2 BCHF	0.36	0.75
FCC-hh	pp	100	2	30	25	580	17(+7) BCHF	0.8	0.35
FCC-eh	ep	3.5	1	2	25	(+100)	1.75 BCHF	0.9	0.13
Muon Collider	$\mu\mu$	14	2	50	15	290	10.7* BCHF	0.21	1.9

Next steps

- To begin with, the ITF will focus on collider facilities.
- AF topical groups (AF3,4,6) provide initial lists of proposals and concepts for evaluation to the ITF. Additional proposals and concepts can be added later. Four categories:
- 1. Existing facilities for references (Tevatron, RHIC, LEP, LHC, Super KEKB, XFEL, LCLS II ...)
- Proposals with TDR and/or CDR
- 3. Proposal without TDR or CDR but reasonably well thought through and mostly based on existing technologies
- 4. Future concepts and ideas
- The ITF will develop a set of metrics that will be used to evaluate the proposals and concepts. Input is welcome.
 - Possible list of metrics:
 - Performance (ab-1/TWh?, Higgs/TWh?, Luminosity/MW?, ...)
 - Physics reach (parton collision energy?, vs. cost?, vs. MW?) (need input from EF topical groups)
 - construction cost (accounting rules?, number of components and length tunnel, ...)
 - schedule/timeline
 - technical risks and R&D status and plans (readiness, required demonstration, ...)
 - operating cost and environmental impact (power consumption (MW, TWh). ...)
 - life cycle cost ?
- Proponents of proposals and concepts are asked to provide the information of their proposal and concept for each metric item by the end of 2020
- ITF will assemble and evaluate all this information and prepare an overall comparison of all the proposals and concepts. This will be presented to the AF topical groups at a workshop, probably during spring 2021, for comments and feedback.
- ITF will prepare a White Paper with the metrics, processes and conclusions for Smowmass'21 in summer 2021.