Xenon Doping

Niccolo' Gallice, Henrique Souza 07/08/2020

Scatter-plot

- Scatter-plot of NQ-Arapuca vs Q-Arapuca
- 2 different contributions (lobes)

Scatter-plot

Scatter-plot av cut ch1

Shape seems very similar despite the a subtle difference in the fast component for NQ

Average light detected (Light yield)

- Average number of photons per trigger was retrieved for each doping.

- A growth in the average is related to the overall efficiency (emission and/or collection)

- Is the ratio affected by geometry ?

	Average photons per trigger			
Xe (ppm)	No Quartz	Quartz		
0.8	33.5	7.8		
3.3	45.5	19.5		
11	56.6	34.5		
15	56.9	37.4		
20	58.3	38.1		

Xe (ppm)	Relative NQ	Q / NQ	
0.8	1.000	0.234	
3.3	1.360	0.428	
11	1.691	0.610	
15	1.702	0.657	
20	1.741	0.655	

Average light detected (Light yield)

Simulation motivation

A simulation could be helpful to:

- Explain the two lobes observed in the scatter-plot
- Check if the relation between the average number of photons and the light yield is linear
- Verify the muon spectrum response obtained by the two x-arapucas.
- Check the ratio between Xe/(Ar + Xe)

Monte Carlo - Toy model

Why a toy model Monte-Carlo?

- Is not a complete *Geant4* simulation. It does not take into account many physical properties, trying only to bring relevant processes and appropriate approximations
- Everything was implemented from scratch, mistakes can be made :)
- Basically only geometrical effects will have an impact on the results

Muon generation:

Phys. Rev. D58, 05401 (1998)

$$\mathcal{D}_{\mu}\left(p,h=1030 \text{ g/cm}^{2},\vartheta=0^{\circ}\right) = Cp^{-(\gamma_{0}+\gamma_{1}\log p+\gamma_{2}\log^{2}p+\gamma_{3}\log^{3}p)}$$

TABLE II. Parameters of the fitting formula (3.4) for the vertical energy spectrum of conventional muons at sea level.

Momentum range (GeV/c)	$C \; (\mathrm{cm}^{-2} \mathrm{s}^{-1} \mathrm{sr}^{-1} \mathrm{GeV}^{-1})$	γ_0	γ_1	γ_2	γ_3
$1 \div 9.2765 \times 10^2$	2.950×10^{-3}	0.3061	1.2743	-0.2630	0.0252

From p = 1 to 10 GeV/c

Angular distribution:

- Zenith: $\cos^2\theta$
- Azimuth: uniform

Muon energy loss:

https://indico.fnal.gov/event/14933/contributions/28526/attachments/17961/22583/Final_SIST_Paper.pdf

Muon energy loss:

Just an approximation: we still have many muons stopping inside the detector (but this did not affect sensibly the results).

https://pdg.lbl.gov/2012/reviews/rpp2012-rev-passage-particles-matter.pdf

Photon emission:

- Isotropic emission
- Light yield was set as 400 photons/MeV. This (roughly) correspond to a 1% efficiency of the X-ARAPUCA.
- Rayleigh Scattering with $\lambda = 1 \text{ m}$
- Absorption [1] with λ = 20 m
- The "type" (128 nm or 175 nm) of photon is decided in the emission, 70% for Xe and 30 % Argon.
- To speed up simulation, we tried to set the photon "type" only if it hit the X-ARAPUCA window. No change in the output was noticed.

[1] Jones, B J P et al. "A Measurement of the Absorption of Liquid Argon Scintillation Light by Dissolved Nitrogen at the Part-Per-Million Level." Journal of Instrumentation 8.07 (2013): P07011–P07011. https://arxiv.org/abs/1306.4605v2.

Shadow due to grids:

In front of the x-arapucas there are:

- 6 TPC wires \rightarrow d = 0.15 mm (diameter) and L = 4.75 mm (pitch)
- Two sets of ground grids (transparency measured at UNICAMP)

DI MILANO

Doping 5 Scatter plot

UNIVERSITÀ DEGLI STUDI DI MILANO

INF

MC - Results

MC - Results

INFN

MC - Results 6 5 4 3 2 0--2 2.5 2 .5 2 0.5 3 n -0.5

INFN

MC vs Data

Summary

- Start from the problem with the two lobes we decided to investigate with a Toy Monte-Carlo simulation

- Toy model Monte-Carlo indicates that the two lobes are mainly geometrical effects with Rayleigh scattering.

- 3rd (and 4th) lobes did not show up in the simulation. Possible causes are still to be investigated. (Cherenkov, muons passing the APA, APA modules shadowing ?)

- The Biggest difference between data and simulation is the amount of events with zero or few photons (atmospheric showers giving "false triggers" ?)

- For MC simulation, average number of photons per trigger has a linear relation with Light Yield

- If we don't consider the Quartz window blocking light, MC simulation gives a ratio Xe/(Xe+Ar) ~7% higher than the one set. (we set 0.70 and the output was 0.75. With Quartz window the output is $0.6 \rightarrow 0.75*0.8$)

av_cut_ch1

No Rayleigh scattering

INFN

