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Atomic sensors for gravitational wave detection
Atomic clocks and atom interferometry offer the potential for gravitational wave 
detection in an unexplored frequency range (“mid-band”)

Mid-band:  0.03 Hz to 3 Hz

Satellite proposal using optical lattice clocks + 
drag free inertial reference (Kolkowitz et al., 
PRD 2016)

Mid-band science

• LIGO sources before they reach LIGO band

• Optimal for sky localization: predict when 
and where inspiral events will occur (for 
multi-messenger astronomy)

• Probe for studying cosmology

• Search for dark matter (dilaton, ALP, …)

MAGIS: Atom interferometry with clock atoms 
serving as both inertial reference + phase 
reference (Hogan, Kasevich, PRA 2016)
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Sky position determination

λ

Sky localization 
precision:

Mid-band advantages

- Small wavelength λ

- Long source lifetime 
(~months) maximizes 
effective R

Images: R. Hurt/Caltech-JPL; 2007 Thomson Higher Education

R

Graham et al., PRD 024052 (2018).
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International efforts in atomic sensors for mid-band GW

MIGA:  Matter Wave laser Interferometric 
Gravitation Antenna (France)

AION:  Atom Interferometer Observatory 
and Network (UK)

ZAIGA:  Zhaoshan Long-baseline Atom 
Interferometer Gravitation Antenna (China)

ELGAR: European Laboratory for Gravitation 
and Atom-interferometric Research
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MAGIS concept

Megaparsecs…

L (1 + h sin(ωt ))

strain

frequency

1. Inertial references

• Freely-falling objects, separated by some baseline

• Must be insensitive to perturbations from non-gravitational forces

2. Clock

• Used to monitor the separation between the inertial references

• Typically measures the time for light to cross the baseline

Passing gravitational waves cause a small modulation in the distance between objects.

Detecting this modulation requires two ingredients:

In MAGIS, atoms play both roles. 

Matter wave Atomic Gradiometer Interferometric Sensor (MAGIS)
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Projected gravitational wave sensitivity

Dots indicate remaining lifetimes of 10 years, 1 year, 0.1 years, and 0.01 years

Full-scale terrestrial 
instrument (km baseline)
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Matter wave Atomic Gradiometer Interferometric Sensor

• 100-meter baseline atom interferometry in existing shaft at Fermilab

• Intermediate step to full-scale (km) detector for gravitational waves

• Clock atom sources (Sr) at three positions to realize a gradiometer

• Probes for ultralight scalar dark matter beyond current limits (Hz range)

• Extreme quantum superposition states: >meter wavepacket separation, 

up to 9 seconds duration
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MAGIS-100: Detector prototype at Fermilab
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Ultralight dark matter

WIMPS

• Mass ~10 GeV (10x proton)

• Particle-like (deposit energy in detector)

“Ultralight” dark matter (e.g., axions, dilatons, etc.)

• Low mass, high number density

• Would act like a classical field

Dark matter BRN report

One example is the 
axion, and axion-
like particles:
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Ultralight scalar dark matter

Ultralight dilaton DM acts as a background field (e.g., mass ~10-15 eV)

Electron

coupling

Photon

coupling
DM scalar 
field

+ …

e.g., 
QCD

DM coupling causes time-varying atomic energy levels:

DM induced 
oscillation

Time

Dark matter 
coupling

DM mass 
density
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Projected sensitivity to dark matter for MAGIS-100

Sensitivity to ultralight scalar dark matter

Sensitivity to B-L coupled new force 
(“fifth force” search)

~ 1 year data taking

Assuming shot-noise limited phase 
resolution

Arvanitaki et al., PRD 97, 075020 (2018).Graham et al. PRD 93, 075029 (2016).

GW detector mode

“Equivalence principle” mode
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Technical development path for GW detection

MAGIS sensor technology R&D effort

State of the art

Phase noise reduction targets

MAGIS detector development

MAGIS-100 is a technology demonstrator for future full-scale terrestrial 
and space-based gravitational wave detectors

Phase noise improvement strategy is a combination of increasing atom flux 
and using quantum entanglement (spin squeezing).
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GW Detector Comparison

Inertial reference Laser phase 
reference

LIGO Suspended end mirrors Second arm

LISA Drag-free proof masses Second baseline

MAGIS Atom Atom

Atomic clock Drag-free proof mass Atom


