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Quantum Sensing and Quantum Computing Across Quantum Networks

• Quantum networks are collections of qubits (nodes) 
connected by interactions, or quantum gates (edges)

• Simplest quantum network is the two qubit EPR state or 
Bell state, which is a workhorse in quantum sensing

• The quantum correlations in EPR quantum 
networks can be used to reduce the noise floor in 
measurements – quantum metrology

• Indefinitely large quantum networks can be built by 
concatenating EPR states – the same network is a 
resource for measurement-based quantum computing 
and distributed quantum sensors
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The know-how in generating long range entanglement for quantum sensing lends itself to building 

quantum computers. This is because in order to make these quantum sensors, one must build a 

quantum network with a two qubit gate interaction between the nodes.
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Motivation:
• Build quantum networks of sensors with entangled states
• Construct, e.g., stabilizer code and perform joint measurements to detect

syndromes on the network
• Quantum noise reduction (QNR) is a signature of this type of entanglement
• Harness QNR and networks to obtain Heisenberg scaling across large geo-

distributed networks for HEP experiments
Also see Dan Carney and Juehang Qin’s talks for more motivation
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Optomechanics (MEMS) Noise

On resonance, Δ𝑥 2
𝑡ℎ > Δ𝑥 2

𝑆𝑄𝐿 =
Δ𝑥 2

𝑠ℎ𝑜𝑡 + Δ𝑥 2
𝑏𝑎𝑐𝑘 above 1 𝜇𝐾.

Off-resonance, 
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Detection Limits

• The fundamental detection limit is the noise floor of the full 
sensor as viewed at the backend after all filters and 
computational analysis

• Our approach increases the signal to noise (SNR) by 
decreasing the noise floor using quantum noise reduction 
(QNR) and increasing dynamic range using quantum signal 
modulation
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Quantum Noise Reduction 

Quantum noise can be viewed as a result of light being composed of discrete 
photons with a random temporal distribution.

This noise represents the shot noise limit (SNL) and is the minimum noise level for 
a classical state of light.

State exhibits quantum noise 

reduction or squeezing

Can generate states of light with less noise in amplitude through the use of a 
nonlinear process that can emit pairs of photons. 

Amount of quantum noise reduction increases with strength of nonlinearity.

t
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Four wave mixing for CV quantum optics

Generate quantum noise reduction via nonlinear 
interactions: 

Force light fields to interact with themselves via 
nonlinear optics near atomic resonance in Rb
vapor.  Joint detection allows quantum noise 
reduction.
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Science 321, 544-547 (2008) Nature 457, 859-862 (2009)
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Recent Theoretical Innovation for Phase Estimation

• Non Linear Interferometry (NLI) improves sensitivity over LI:

– Replace beam splitters with parametric amplifiers (PA)

– Second PA becomes phase sensitive improves sensing signal

– Does not change noise, improving SNR

– For amplitude gain G, the SNR is:

– In this limit, the SNR improvement 
relative to LI is:

SNRNLI/SNRLI ≈ 2 G2

Z. Y. Ou, Phys. Rev. A 85, 023815 (2012)



11

Homodyne detection

• Phase sum and amplitude difference 
show noise reduction for misaligned 
modes

• For pure phase, noise equivalent to two-
mode-squeezed source

∆𝜑 = 𝑛∆𝑑

∆𝑝+
2

∆𝑝+
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𝑝+ = 𝑝𝑖 + 𝑝𝑗 + ∆𝜑
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Nonlinear Interferometric AFM imaging

Truncated Nonlinear Interferometry for Quantum-Enhanced 

Atomic Force Microscopy, RC Pooser, N Savino, E Batson, JL 

Beckey, J Garcia, BJ Lawrie

Physical Review Letters 124 (23), 230504 (2020)
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But probably should go integrated

• See Dan Carney and Jeuhang Qin’s talks

• Much less squeezing on chip, but

• Will be crucial for limiting losses in signal transduction 
outlined by others here

• Will allow for longer range quantum networks

arXiv:1904.07833v3
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Thanks!

• W. M. Keck foundation

• DOE BES

• ORNL LDRD program

• SULI program

• Intelligence community postdoc 
program

• ORNL CNMS

• Office of Naval Research

Collaborators

• Ben Lawrie (ORNL)

• Stephen Jesse 

(ORNL)

• Jeff Garcia (intern)

• Nick Peters

• Joe Lukens

• Nick Savino

• Emma Batson

• Nick Black

• Miller Eaton


