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Quantum Sensing and Quantum Computing Across Quantum Networks OAK RIDGE

National Laboratory
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The know-how in generating long range entanglement for quantum sensing lends itself to building
guantum computers. This is because in order to make these quantum sensors, one must build a
guantum network with a two qubit gate interaction between the nodes.
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Motivation:

 Build quantum networks of sensors with entangled states

« Construct, e.g., stabilizer code and perform joint measurements to detect
syndromes on the network

« Quantum noise reduction (QNR) is a signature of this type of entanglement

« Harness QNR and networks to obtain Heisenberg scaling across large geo-
distributed networks for HEP experiments

Also see Dan Carney and Juehang Qin’s talks for more motivation
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OAK RIDGE

Optomechanics (MEMS) Noise National Laboratory
1.Thermal noise limit due to cantilever On resonance, ((AX)Z)th > ((Ax)2>SQL =
interactions with heat bath, ((A%)?)epor + ((AX)?)pgcr abOVe 1 UK.

2.Shot noise limit due to photostatistics Off-resonance
3.Back-action noise limit due to fluctuations ’
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: . OAK RIDGE
DeteCt 10N L IMmi tS National Laboratory

* The fundamental detection limit i1s the noise floor of the full
sensor as viewed at the backend after all filters and

computational analysis
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Analysis W'n‘_jOW —_— Analysis variable
(frequency, time, etc.) (frequency, time, etc.)

* Our approach increases the signal to noise (SNR) by
decreasing the noise floor using quantum noise reduction
(QNR) and increasing dynamic range using quantum signal

modulation
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Quantum Noise Reduction OAK RIDGE

National Laboratory

¢ Quantum noise can be viewed as a result of light being composed of discrete
photons with a random temporal distribution.

((A7)?) optiial power
e o e e o o oo'__._,—--?:+5i(t) Ao A A

t
+ This noise represents the shot noise limit (SNL) and is the minimum noise level for
a classical state of light.

Can generate states of light with less noise in amplitude through the use of a
nonlinear process that can emit pairs of photons.

' . State exhibits guantum noise
EEREEEEXE o' __,—--3+53(t) | reduction or squeezing

A
| = il o . I t

* Amount of guantum noise reduction increases with strength of nonlinearity.
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. : OAK RIDGE
FOUI' wave mIXIng fOr CV quantum OptICS National Laboratory

Generate quantum noise reduction via nonlinear
Interactions:

Force light fields to interact with themselves via
nonlinear optics near atomic resonance in Rb
vapor. Joint detection allows quantum noise
reduction.

D1 line
795nm

Science 321, 544-547 (2008) Nature 457, 859-862 (2009)
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Recent Theoretical Innovation for Phase Estimation 9{"515{1)95’
* Non Linear Interferometry (NLI) improves sensitivity over LI:

— Replace beam splitters with parametric amplifiers (PA)

— Second PA becomes phase sensitive improves sensing signal

— Does not change noise, improving SNR

— For amplitude gain G, the SNR is:
/a>+cin
-c-l’)' PAI
G*¢*(@lal” +2)8°/1 ~ 4G*I18>  for Ja|* > 1 l'” chPgl Yi2i=gjap
Q
6
— In this limit, the SNR improvement G:8, Cout
: ' \T)_ PA2 >
relative to LI is: p
out
LO
SNRNL|/SNRL| = 2 GZ (b)

Z. Y. Ou, Phys. Rev. A 85, 023815 (2012)
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: OAK RIDGE
H omo dyn e d ete Ctl on National Laboratory
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Phase sum and amplitude difference Ap2 = “"[1+ 200G —1 - /GG — D)
show noise reduction for misaligned Prot
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* For pure phase, noise equivalent to two- Z (Pt = Po — Pf)[] +20:(G — 1)]
mode-squeezed source P Pt

Ap2 =1+4+29[G — 1 —/G(G — 1]
P+ =p; +p; + A
Ap = nAd
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Nonlinear Interferometric AFM imaging
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Truncated Nonlinear Interferometry for Quantum-Enhanced T
Atomic Force Microscopy, RC Pooser, N Savino, E Batson, JL 2
Beckey, J Garcia, BJ Lawrie
Physical Review Letters 124 (23), 230504 (2020) 01
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But probably should go integrated

- See Dan Carney and Jeuhang Qin’s talks
* Much less squeezing on chip, but

» Will be crucial for limiting losses in signal transduction
outlined by others here

» Will allow for longer range quantum networks
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Thanks!
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