

Plan of Heavy Flavor Physics with CMS experiment

Jing Wang (MIT), Heavy Flavor Physics with CMS, Snowmass EF07

Jing Wang

Snowmass EF07 working meeting 20 August 2020

Heavy-ion data in CMS

	Run	Collision	Energy	Lumi	Scale to pp	_
 Run 1	2011	Pb-Pb	2.76 TeV	0.17 nb ⁻¹	7.5 pb ⁻¹	
	2013	p-Pb	5.02 TeV	0.035 pb ⁻¹	7.4 pb ⁻¹	
	2015	р-р	5.02 TeV	28 pb ⁻¹	28 pb ⁻¹	
	2015	Pb-Pb	5.02 TeV	0.55 nb ⁻¹	24 pb ⁻¹	
	2016	p-Pb	8.16 TeV	0.18 pb ⁻¹	38 pb ⁻¹	
 I TUIT Z	2017	Xe+Xe	5.44 TeV	6.0 μb ⁻¹	0.1 pb ⁻¹	
	2017	р-р	5.02 TeV	316 pb ⁻¹	316 pb ⁻¹	
	2018	Pb-Pb	5.02 TeV	1.7 nb ⁻¹	74 pb ⁻¹	
 Run 3	2022 Jn 3 ~ 2024	р-р	5.5 / 8.8 TeV	300 / 100 pb ⁻¹	300 / 100 pb ⁻¹	
		Pb-Pb	5.5 TeV	6.2 nb ⁻¹	268 pb ⁻¹	
		p-Pb	8.8 TeV	0.6 pb ⁻¹	126 pb ⁻¹	
		0-0/p-0	7 / 9.9 TeV	0.5 / 0.2 nb ⁻¹		
 Run 4	2027	р-р	5.5 / 8.8 TeV	300 / 100 pb ⁻¹	300 / 100 pb ⁻¹	
	n 4 i ~ i	Pb-Pb	5.5 TeV	6.8 nb ⁻¹	294 pb ⁻¹	
	2029	p-Pb	8.8 TeV	0.6 pb ⁻¹	126 pb ⁻¹	_

Jing Wang (MIT), Heavy Flavor Physics with CMS, Snowmass EF07

Heavy-ion data in CMS

	Kun :	Collision	Energy	Lumi	Scale to pp
Run 1	2011				
	2013				
	2015		2015 PhPh	0.5 nb^{-1}	
	2015		2010 DbDb $1.0.010$ $3-10x$ statistic)x statistics
	2016			0.18 pb ⁻¹	
nuli 2	2017		500:0.18	6.0 ub-1	
	2017			316 pb ⁻¹	
	2018	Pb-Pb	5.02 TeV	1.7 n 7x st	atistics
	2022	p-p	5.5 / 8.8 TeV	300/100.382	K errors
				6.2 mb ⁻¹	
Run 3	~ 2024		We will h	ave 0.6 bb-1	
			7 PbPb: 13	nb ¹ 5 / 0.2 nb ⁻¹	
	2027		5.5 pPb: 1.2	pb-1 0 / 100 pb-1	
Run 4	\sim		5.5 TeV	6.8 nb ⁻¹	
	2029				

Big Questions?

Models: Approximation

Mode

Onset of QGP, N

Energy loss, Collec

Formation/hydi

Big Questions?

els: Approximation	QCD predict dest unders
	We want to know in experimer
umber of DoF change	QGP existence
ctive motion, Diffusion	Particle behavior
rodynamize, Evolution	Medium feature

Solve Big Questions?

Models: Approximation

We want to know in experiments

test

QGP existence

Particle behavior

Medium feature

Prerequisites

Good control of CNM effects

QCD

- Good understanding of baseline/ reference system
- Good knowledge of initial energy density distribution
- Good understanding of hadronization

7

Heavy quarks as golden probe: behave *different* from light quarks

Unique characteristics

- "Simple": Brownian motion diffusion, simple diffusion coefficient D_s (m_c , $m_b \gg T_{QGP}$)
- Slow but hard: produced in early hard process even at low p_T (Q ~ m_c , m_b , τ ~ 1/Q)
- "Feasible": production calculable with pQCD even at low pT (m_c, m_b $\gg \Lambda_{QCD}$)
- Clean: difficult produced in medium $(m_c, m_b \gg T_{QGP})$

Heavy quarks as golden probe: behave *different* from light quarks

Different response to medium

- Flavor dependence (dead cone effect)
- Harder to be dragged by medium

Unique characteristics

- "Simple": Brownian motion diffusion, simple diffusion coefficient D_s (m_c , $m_b \gg T_{QGP}$)
- Slow but hard: produced in early hard process even at low p_T (Q ~ m_c , m_b , τ ~ 1/Q)
- "Feasible": production calculable with pQCD even at low pT (m_c, m_b $\gg \Lambda_{QCD}$)
- Clean: difficult produced in medium $(m_c, m_b \gg T_{QGP})$

Prerequisites

- Good control of CNM effects
- Good understanding of baseline/ reference system
- Good knowledge of initial energy density distribution
- Good understanding of hadronization

HF RAA

CMS has measured R_{AA} and v₂ of various HF hadrons Precision expected to be improved significantly with 2018 and Run 3 data

•

Jing Wang (MIT), Heavy Flavor Physics with CMS, Snowmass EF07

R_{AA} and v₂

D meson v_2

D meson R_{AA}

• Low p_T (convoluting multiple effects) has best distinguish power Can we get everything we want to know if we have zero-uncertainty data results?

Modeling R_{AA} and v₂

D meson v_2

What do we distinguish among models?

- Jet model
 - Medium modeling
 - Virtuality and branching
 - Kinematical approximation
- Transport model
 - LV vs. BM
 - Bulk evolution
 - Collisions vs. radiations
 - Initial conditions
 - Parameters (T₀ etc.)

Isolate charm quark fragmentation component?

Jing Wang (MIT), Heavy Flavor Physics with CMS, Snowmass EF07

More "differential"

Other observables: D-jet Correlation

D-jet correlation vs. models

Different trends from models

Other observables: D-D Correlation

- Relatively simpler (no jets) to calculate for theorists

• $D-\overline{D}$ correlation as a more sensitive observable than inclusive R_{AA} and v_2

Onset of QGP

Particle behavior

Medium feature

Prerequisites

- Good control of CNM effects
- Good understanding of baseline/ reference system
- Good knowledge of initial energy density distribution
- Good understanding of hadronization

Prompt D⁰ v₂ in various systems 0.25 CMS PbPb 5 TeV 30-50% Prompt D⁰ CMS pPb 8 TeV 0.2 N^{offline}[185,250) Prompt D⁰ *CMS* pp 13 TeV $N_{trk}^{OIIIINE} \ge 100 \text{ Prompt D}^0$ 0.15 PbPb < < 0. 0.05 0 pp -0.05 4 6 8 10 12 14 16 18 20 **つ** p_T (GeV/c)

Onset of QGP

- Non-zero prompt D⁰ v₂ in pp, pPb, PbPb
- When we will get QGP?
- What is the smallest droplet of QGP that behaves hydrodynamically?

Camelia's HP talk

Prompt D⁰ v₂ vs. centrality

Onset of QGP

- Some bridges connecting small and large system
 - High-multiplicity pp
 - Intermediate ions (O-O)
 - Very peripheral events (proposed record all 70-100% events in Run 3)

Medium evolution

Prerequisites

- Good control of CNM effects
- Good understanding of baseline/ reference system
- Good knowledge of initial energy density distribution
- Good understanding of hadronization

Time structure of evolution: Top quark

Jing Wang (MIT), Heavy Flavor Physics with CMS, Snowmass EF07

let

Hard probe R_{AA}

- Experience the whole evolution
- Only see accumulated effect
- Time dependence?

PRL 120 (2018) 23, 232301

Top-produced jet

- Interaction delayed by
 - \rightarrow τ_{top} : top lifetime
 - \rightarrow τ_W : W lifetime
 - \rightarrow τ_d : de-coherence time
- Study top production helps understand evolution time structure

Time structure of evolution: Top quark

More statistics needed to extract the info

Jing Wang (MIT), Heavy Flavor Physics with CMS, Snowmass EF07

- Hard probe R_{AA}
 - Experience the whole evolution
 - Only see accumulated effect
 - Time dependence?

PRL 120 (2018) 23, 232301

- Top-produced jet
 - Interaction delayed by
 - \rightarrow τ_{top} : top lifetime
 - \rightarrow τ_W : W lifetime
 - \rightarrow τ_d : de-coherence time

Study top production helps understand evolution time structure

Heavy flavor production in proton-proton lest Models: Approximation QCD QGP understand We want to know in experiments QGP existence Particle behavior Medium feature Prerequisites Good control of CNM effects Good understanding of baseline/ reference system Good knowledge of initial energy density distribution Good understanding of hadronization

Production in pp vs. pQCD calculation

Production in pp vs. pQCD calculation

Jet shape: b jet / inclusive jet

- Particles shift further away from jet axis in b-jets
- Feature not captured by PYTHIA at large r

CMS

Hadronization mechanism

Jing Wang (MIT), Heavy Flavor Physics with CMS, Snowmass EF07

Models: Approximation

We want to know in experiments

lest

QGP existence

Particle behavior

Medium feature

Prerequisites

Good control of CNM effects

QCD

- Good understanding of baseline/ reference system
- Good knowledge of initial energy density distribution
- Good understanding of hadronization

Hadronization in pp collisions

Jing Wang (MIT), Heavy Flavor Physics with CMS, Snowmass EF07

For the underestimation of Λ_c production by PYTHIA fragmentation only

Is color reconnection a good solution?

2017: 7x more statistics

PLB 803 (2020) 135328

Hadronization across collision systems

Λ_c / D⁰ vs. multiplicity

- Is transition smooth?
 - High-multiplicity pPb in CMS
 - \rightarrow What does it mean if Λ_c/D^0 same for pp and PbPb at same multiplicity?
- Is dN/dŋ a good scale for systems?

Jing Wang (MIT), Heavy Flavor Physics with CMS, Snowmass EF07

Hadronization of beauty

B_S / **B**⁺ vs. centrality

Jing Wang (MIT), Heavy Flavor Physics with CMS, Snowmass EF07

• What will happen to B_s in high-multiplicity pp?

CMS-PAS-HIN-19-011

"New physics": X(3872) internal structure

Heavy ion collisions not only for studying QGP

Jing Wang (MIT), Heavy Flavor Physics with CMS, Snowmass EF07

CMS

"New physics": X(3872) internal structure

Heavy ion collisions not only for studying QGP

- Molecule easier to be produced w/ recombination of quarks in medium
- ► NMolecule > NTetraquark

- Centrality dependence
- N_{Molecule} > N_{Tetraquark}

- Molecule (more loosely bound) regenerated later in the evolution compared to tetraquark
- ► NMolecule < NTetraquark

- Destroyed by comover
- **Recomination not included**
- Including recombination gives wrong trend

- CMS has performed various HF measurements with hadrons and jets
- Expect significant improvement on precision with 2018 data
- Close to statistics limit with Run 3/4 (Systematics start to dominate)
- More differential measurements in plan
- Explore observables more sensitive to HQ diffusion
- High-multiplicity pp, intermediate ions, and ultra peripheral to study onset of QGP

- HF production in pp collisions is not perfectly understood Study hadronization mechanisms across system sizes
- Answer other physics questions w/ HF in Heavy-ion collisions

Summary

Prerequisites

- Good control of CNM effects
- Good understanding of baseline/ reference system
- Good knowledge of initial energy density distribution
- Good understanding of hadronization

Thanks for your attention!

Isabelle

Thanks for your attention!

41.9 5

Production in pp vs. pQCD calculation

Jing Wang (MIT), Heavy Flavor Physics with CMS, Snowmass EF07

J/ψ fragmentation function in jets

- Hadron production mechanism not very well known

Hadronization

Λ_c / D⁰ vs. multiplicity

Jing Wang (MIT), Heavy Flavor Physics with CMS, Snowmass EF07

Summary (I): We have learnt a lot before

2797 135048 062002	Initial stage arXiv:1910.08789 PRC 100 (2019) 064908 PLB 799 (2019) 135049 PLB 789 (2019) 643 PRC 97 (2018) 044912 JHEP 01 (2018) 045 PRL 119 (2017) 242001	Jet quenching JHEP 10 (2018) 138 PLB 785 (2018) 14 PRL 119 (2017) 082301 JHEP 04 (2017) 039	Jet substructure arXiv:2005.14219 arXiv:2004.00602 PRL 122 (2019) 152001 JHEP 10 (2018) 161 JHEP 05 (2018) 006 PRL 121 (2018) 242301 PRL 120 (2018) 142302	Collective dyn PRC 100 (2019) (PRC 98 (2018) 04 PLB 776 (2017)
tem 4812 014912 0) 172 082301 092301	Heavy flavors arXiv:1911.01461 PRL 123 (2019) 022001 JHEP 03 (2018) 181 PLB 782 (2018) 474 PRL 120 (2018) 202301 PRL 119 (2017) 152301	Quarkonion prod. PLB 790 (2019) 270 PLB 790 (2019) 509 EPJC 78 (2018) 509 PRL 120 (2018) 142301 EPJC 77 (2017) 269 PRL 118 (2017) 162301	Hadronization PLB 803 (2020) 135328 PLB 796 (2019) 168	More prelimit results in que

nPDF

arXiv:2003.12 PLB 800 (2020) PRL 121 (2018)

Small syst

arXiv:1910.04 PRC 101 (2020) PLB 791 (2019 PRL 121 (2018) PRL 120 (2018)

→ CMS Heavy-ion Publications

→ CMS Heavy-ion Preliminary

Look into what you are interested in!

Only from publications w/ Run II data...

Jing Wang (MIT), Heavy Flavor Physics with CMS, Snowmass EF07

amics)44902 44902 195

