AF7/Magnet LoI Presentations

1. Regional program overviews
 - US (Prestemon); EU (Bottura); Japan (Ogitsu); China (Xu)

2. Detector Magnets
 - FCC-hh, FCC-ee, AMS (Mentink); J-PARC g-2/EDM, COMET-I&II, ILC (Sasaki)

3. New superconducting wire and cable development
 - Ultra thin A-15 (Kitaguchi); PIT-IBS (Ma)

4. Dipole magnet design and development
 - Cos\(\theta\), CCT, Fast ramping (Fabbricatore); Block (Felice); Common coil (Gupta); REBCO (Wang); Bi-2212 Accelerators (Garcia-Fajardo); Hybrid Nb3Sn/HTS (Ferracin); Bi-2212 Solenoids (Davis);

5. Special magnets and new fabrication technologies
 - Direct wind, high field solenoids (Amm); wind-react-wind (Caspi)

6. New accelerator concepts
 - Collider in the sea (McIntyre)
US Magnet Development Program

The US Magnet Development Program
Planning for the future

Soren Prestemon
US Magnet Development Program
Lawrence Berkeley National Laboratory

Management Team
Kathleen Amm, Lance Cooley, Steve Gourlay, David Larbalestier, George Velev, Sasha Zlobin
US Magnet Development Program

Program vision and goals

• Vision
 - Maintain and strengthen US Leadership in high-field accelerator magnet technology for future colliders;
 - Further develop and integrate magnet research teams across the partner laboratories and US Universities for maximum value and effectiveness to MDP;
 - Identify and nurture cross-cutting / synergistic activities with other programs (e.g. Fusion), to more rapidly advance progress towards our goals.

• Overarching goals:
 - Explore the performance limits of Nb3Sn accelerator magnets, with a sharpened focus on minimizing the required operating margin and significantly reducing or eliminating training
 - Develop and demonstrate an HTS accelerator magnet with a self-field of 5T or greater, compatible with operation in a hybrid HTS/LTS magnet for fields beyond 16T
 - Investigate fundamental aspects of magnet design and technology that can lead to substantial performance improvements and magnet cost reduction
 - Pursue Nb3Sn and HTS conductor R&D with clear targets to increase performance, understand present performance limits, and reduce the cost of accelerator magnets
Major results from the previous four years

- Progress on multiple fronts
 - Cos-theta magnet MDPCT1 (FNAL) achieved 14.5T (60mm aperture)!
 - First two 2-layer Nb₃Sn Canted-Cos-theta (CCT) magnets (90mm bore) tested
 - Reached 86-88% short-sample; different epoxy => improved training;
 - Steady progress on REBCO CORC-based magnet technology
 - Significant progress on Bi2212 magnet technology
 - 4.7T common coil => no training!
 - Variety of developments and improvements in diagnostics
 - Important developments in conductor R&D (with industry)
 - Record Nb₃Sn via Zr doping; strong promise from Hf alloying
 - Record Bi2212 wire performance
 - Significantly exceeds “FCC spec” at 16T
 - New Bi2212 powder producer – seeded by SBIR
 - And many others…
US Magnet Development Program

Main themes and key questions for the updated roadmaps

- **Major themes:**

 1. Explore the potential for stress-managed structures to enable high-field accelerator magnets, i.e., structures that mitigate degradation to strain-sensitive Nb3Sn and HTS superconductors in high-field environments;

 2. Explore the potential for hybrid HTS/LTS magnets for cost-effective high field accelerator magnets that exceed the field strengths achievable with LTS materials;

 3. Advance magnet science through the rapid development and deployment of unique diagnostics and modeling tools to inform and accelerate magnet design improvements;

 4. Perform design studies on high field accelerator magnet concepts to inform DOE-OHEP on further promising avenues for magnet development;

 5. Advance superconductors through enhanced performance, improved production quality, and reduction in cost - all critical elements for future collider applications.

<table>
<thead>
<tr>
<th>Q#</th>
<th>Driving questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>What is the nature of accelerator magnet training? Can we reduce or eliminate it?</td>
</tr>
<tr>
<td>2</td>
<td>How do we best define operating margin for Nb3Sn and HTS accelerator magnets, and to what degree can and should it be minimized?</td>
</tr>
<tr>
<td>3</td>
<td>Can we control the disturbance spectrum and engineer a magnet response to reduce operating margin and enhance reliable performance?</td>
</tr>
<tr>
<td>4</td>
<td>What are the mechanical limits and possible stress-management approaches for Nb3Sn, HTS, and 20 T hybrid LTS/LTS magnets, and do they have defined mechanical limits?</td>
</tr>
<tr>
<td>5</td>
<td>Do hybrid designs benefit from the best features of LTS and HTS, or inherit the difficulties of both material technologies?</td>
</tr>
<tr>
<td>6</td>
<td>What is the optimal operating temperature for Nb3Sn and HTS magnets?</td>
</tr>
<tr>
<td>7</td>
<td>What are the possibilities and limitations associated with safely protecting Nb3Sn and HTS magnets?</td>
</tr>
<tr>
<td>8</td>
<td>Can we provide accelerator quality Nb3Sn magnets beyond 16 T? What are the operational field limits for Nb3Sn magnets?</td>
</tr>
<tr>
<td>9</td>
<td>What is the optimal operational field for Nb3Sn dipoles? For hybrid HTS/LTS dipoles?</td>
</tr>
<tr>
<td>10</td>
<td>Can we build practical and affordable accelerator magnets with HTS conductor(s)?</td>
</tr>
<tr>
<td>11</td>
<td>What drives the economics of high field accelerator magnets? Are there innovative approaches to magnet design that address the key cost drivers for Nb3Sn and HTS magnets and do they shift the cost optimum to higher fields?</td>
</tr>
<tr>
<td>12</td>
<td>What are the near and long-term goals for Nb3Sn and HTS conductor development? What performance parameters in Nb3Sn and HTS conductors are most critical for high field accelerator magnets? Can we effectively define limiting factors (properties, cost, manufacture) of present HTS conductors and accelerate their development to industrial maturity?</td>
</tr>
<tr>
<td>13</td>
<td>Prototype HTS magnets made so far, whether made from Bi-2212 or from REBCO have not shown training even in dipole geometry where Nb3Sn is particularly sensitive. Is it possible to envisage NO TRAINING as a potentially vital, cost-saving attribute of HTS conductor use?</td>
</tr>
</tbody>
</table>
US Magnet Development Program

Program roadmap for the next 4-5 years

- Strategic directions for the update plan:
 - Probing stress management structures
 - Hybrid HTS/LTS designs
 - Understanding and impacting the disturbance-spectrum
 - Advancing both LTS and HTS conductors, optimized for HEP applications

A new technology element

20T Hybrid Magnet Design & Comparative Analysis,

is designed to prepare for future milestones and directions

MDP updates April 1, 2020
US Magnet Development Program

Draft ten-year roadmap

- A 10-year high-level roadmap recognizes the Snowmass process and possible program adjustments

- Significant synergies with other programs
 - NHMFL development of high field solenoid technologies
 - Fusion development of high-field HTS-based Tokamaks
 - The DOE HEP and FES offices are investing now in a High Field Cable Test Facility
 - 15T, 100x150mm bore
 - Primarily for HTS Cable testing
 - Facility to be hosted at FNAL
 - LBNL responsible for magnet
 - Collaborating with CERN
High Field Magnet Development for HEP – A Proposal

L. Bottura (CERN), B. Auchmann (CERN), A. Ballarino (CERN), A. Devred (CERN), S. Izquierdo-Bermudez (CERN), L. Rossi (CERN), F. Savary (CERN), E. Todesco (CERN), D. Tommasini (CERN), G. De Rijk (CERN), D. Schoerling (CERN)

H. Felice (CEA), P. Vedrine (CEA)

F. Toral (CIEMAT), L. Garcia-Tabares Rodriguez (CIEMAT), J.-M. Perez (CIEMAT)

P. Fabbricatore (INFN), S. Farinon (INFN), M. Sorbi (INFN)

M. Seidel (PSI), S. Sanfilippo (PSI)

C. Senatore (UniGe)

B. Holzapfel (KIT), M. Noe (KIT), T. Arndt (KIT)

NOTE: draft author list for the moment
The Status (August 2020)

- The HL-LHC Nb$_3$Sn program has set a new benchmark: we have completed the initial model and prototype magnet development for operation in the 11-12 T field range and the next step is to capitalize on it, use this benchmark to develop industrial, robust and efficient techniques.

- We have a few demonstrators showing that Nb$_3$Sn has the potential to operate at fields beyond 14 T, the next step is to confirm this potential with model magnets and prototypes.

- We have not yet had the opportunity to explore the potentials of HTS, the next step is to develop and test demonstrators to assess this technology.
HFM Mission Statement (2021-2027)

• Push Nb$_3$Sn magnet technology to its practical limit, both in terms of maximum performance as well as production scale

 – **Demonstrate Nb$_3$Sn full potential** in terms of ultimate performance (target 16 T)

 – **Develop Nb$_3$Sn magnets for collider-scale production**, through robust design, industrial processes and cost reduction (benchmark 12 T)

• **Provide a proof-of-principle for HTS magnet technology** beyond the reach of Nb$_3$Sn, and sufficient field quality for accelerator application (target in excess of 20 T)
HFM Mission Statement (2021-2027)

- Value-engineered Nb\textsubscript{3}Sn

- Ultimate Nb\textsubscript{3}Sn performance

- Next phase

- HTS target
Future plans

• A paper is in drafting phase, shared with the collaborators (description of the HFM program)
• Discussions are on-going with present and potential collaborators
• The program is intended as a collaborative effort, and will benefit from coordination and communication (worldwide)
 – How to build the structure of the program (work packages)
 – How to coordinate ands communicate
 • A governance?
R&D work for Superconducting Magnet for Future Accelerator Applications

- Toru Ogitsu1a, Tatsushi Nakamoto1, Ken-ichi Sasaki1, Michinaka Sugano1, Masami Iio1, Kento Suzuki1, Makoto Yoshida2, Satoshi Awaji3b, Naoyuki Amemiya4c, Yusuke Sogabe4;
 - 1 KEK Cryogenics Science Center,
 - 2 KEK Institute of Particle and Nuclear Physics,
 - 3 Tohoku University High Field Laboratory for Superconducting Materials,
 - 4 Kyoto University Graduate School of Engineering Department of Electrical Engineering

Technical Highlights

- High Field Superconducting Accelerator Magnet Technologies
- Radiation Hard Superconducting Magnet Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Near Term Target</th>
<th>Mid Term Target</th>
<th>Ultimate Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Field</td>
<td>High Field High Jc Reinforced Nb\textsubscript{3}Sn</td>
<td>12T Large Aperture R&D Dipole</td>
<td>High Field Radiation Hard SC Magnets for Future High Energy and High Intensity Accelerators (FCC, Muon Collider..)</td>
</tr>
<tr>
<td>Radiation Hard</td>
<td>Radiation Hard HTS Mag. Technologies</td>
<td>J-PARC MLF 2nd Target</td>
<td></td>
</tr>
</tbody>
</table>

8/27/2020

Snowmass AF7-Magnets
R&D work for Superconducting Magnet for Future Accelerator Applications

• High Field Superconducting Accelerator Magnet Technologies

HL-LHC D1 Development

FCC D1 Design Study

12 T large aperture (100mm) Nb$_3$Sn dipole magnet development (FCC D1 Model)

16 T dipole magnet R&D with 4 T Nb$_3$Sn insert

20 T dipole magnet R&D with 8 T HTS insert

High Field High Jc Nb$_3$Sn R&D

Strain-Jc Measurement Instruments

Internal Strain Measurement by Neutron Diffraction at J-PARC
(with Mechanical Reinforcement)
R&D work for Superconducting Magnet for Future Accelerator Applications

- Radiation Hard Superconducting Magnet Technologies

US-JP R&Ds
- Gamma Irradiation on Organic Material
- Neutron Irradiation on Superconductor
- Inorganic Insulation Study
- HTS Quench Protection Study (Al Stabilizer See Sasaki’s Proposal)

High Field Radiation Hard SC Magnet Technologies
- FCC IRQ Muon Collider Etc..

COMET Capture Solenoid Development

J-PARC MLF Second Target Design Study

J-PARC MLF Second Target with High Intensity Muon Source

8/27/2020

Snowmass AF7-Magnets
Status and Plan of the High Field Magnet R&D for Future Accelerators
Qingjin Xu (IHEP-CAS) and Yanwei Ma (IEE-CAS)

SPPC Magnet Design Scope
Field strength: **12-24 Tesla** to get **75-150 TeV** in a **100-km tunnel**
Baseline **Iron-Based Superconductor (IBS)**, **Nb$_3$Sn/ReBCO etc.** as options
Aperture diameter: **40~50 mm**
Field quality: **10^{-4}** at the 2/3 radius

$$E[GeV] = 0.3 \times B[T] \times \rho[m]$$
Status and Plan of the High Field Magnet R&D for Future Accelerators
Qingjin Xu (IHEP-CAS) and Yanwei Ma (IEE-CAS)

R&D Roadmap for next years

- Nb$_3$Sn+HTS
 - 2*φ30 aperture
 - 15T @ 4.2K

- Nb$_3$Sn+HTS or HTS
 - 2*φ45 aperture
 - 20T @ 4.2K
 - With 10^-4 field quality

- NbTi+Nb$_3$Sn
 - 2*φ10 aperture
 - 10T @ 4.2K
Now China has two 5-Year Programs for IBS and high-field magnets, starting in 2018 and 2019, respectively.

Proposal for Strategic Priority Research Program of Chinese Academy of Sciences (CAS) Science and Technology Frontier Research for High Field Applications of High Temperature Superconductors

Ranked No. 1 in 7 candidates by Academic Committee of CAS

360M RMB for 2018-2023

International collaboration are welcome!

1. Mainly 122 PIT wires & tapes
2. 11 coated conductors
 (100 m long fabrication)

R&D from Fundamental research, advanced IBS conductors to Magnet & SRF technology
Superconducting Detector Magnets for High Energy Physics

- Matthias Mentink, Helder Pais Da Silva, Tim Mulder, Alexey Dudarev, CERN
- Technical Highlights:
 - FCC-hh baseline detector design comprising superconducting solenoids utilizing aluminum-stabilized Nb-Ti conductor
 - FCC-ee “IDEA” baseline detector design, featuring ultra-transparent solenoid utilizing high-stress aluminum-stabilized Nb-Ti conductor
 - ReBCO-based ultra-transparent concentric superconducting solenoid for AMS-100 [1,2], also of interest for FCC-ee

1. In collaboration with: University of Aachen, Paul Scherrer Institute, University of Geneva
Development of Large Scale Superconducting Solenoid Technologies for Future Accelerator Experiments

- Ken-ichi Sasaki1, Mitsushi Abe1, Makoto Yoshida2, Masami Iio1, Takahiro Okamura2, Yasuhiro Makida2, Naoyuki Sumi1, Toru Ogitsu1, Hiromi Iinuma3;
 - 1 KEK Cryogenics Science Center, 2 KEK Institute of Particle and Nuclear Physics, 3 Ibaraki University Graduate School of Science and Engineering,

- Technical Highlights
 - Technology for high precision magnetic field design, control and mechanical design in 3-D and cryogenic system.
 - R&D for advanced Al stabilized superconducting cable

<table>
<thead>
<tr>
<th>Near Term Target</th>
<th>Mid Term Target</th>
<th>Ultimate Target</th>
</tr>
</thead>
</table>
| Design technology | J-PARC g-2/EDM | COMET Phase-II J-PARC MLF 2nd Target | ILD for ILC
| • J-PARC g-2/EDM | • COMET Phase-II J-PARC MLF 2nd Target | • Detector for FCC
| • COMET Phase-I | • Magnets for High Intensity Muon source |
| Al stabilized SC cable | Basic R&D -Advanced NbTi-HTS | Production |
Design technology

- Precision Mag. Field Design
- Sophisticated Cryo system
- Mech. design for strong/complicated mag. force

Advanced Al stabilized SC conductor

- R&D of advanced cable for ILC
- Basic R&D of Al stabilized HTS

- Ultimate target
 - ILD for ILC
 - Detector for FCC
 - Magnets for High Intensity Muon source

Project Timeline

- TOPAZ (1980's~1990's)
- ATLAS (LHC ~2000's)
- CMS (Hybrid stabilizer)
- VENUS
- AMY
- COMET Phase-I
- COMET Phase-II
- Cryo System for ILD
- ILD for ILC
- Detector for FCC
- Magnets for High Intensity Muon source

Key Experiments and Instruments

- TOPAZ
- LHC
- ATLAS
- CMS
- VENUS
- AMY
- COMET CAP (2015)
Ultra-thin A15 SC wires for future accelerators

- Hitoshi KITAGUCHI and Akihiro KIKUCHI (National Institute for Materials Science, Japan)

- Technical Highlights:
 0.03-0.05mmdia ultra-thin A15 SC (\(\text{Nb}_3\text{Al}, \text{Nb}_3\text{Sn}\)) wires → “React and Wind (R&W)” coil fabrication
 Higher flexibility in cable design & tuning

\textbf{Example: 0.03mmdia \text{Nb}_3\text{Al} wire}
• Rutherford cable for R&W magnets (under development)

- Ultra-thin SC strand
- 1st bundle: 37 ultra-thin strands
- 2nd bundle: 37x7(259) ultra-thin strands
 (Equivalent to 1 mmdia monolith strand)

Final flexible Rutherford cable

Successful feasibility study for cabling by using 0.05mmdia pure copper strands
Advantages of IBS:

◆ **High** \(T_c\) (**55 K**), **Ultra-high** \(H_{c2}\) (**150 T**) and **High** \(J_c\).
◆ **Small anisotropy**, e.g., **1~2** for **122** type and **Large n-value**.
◆ **Simple fabrication process** and **good Mechanical properties**.
◆ **No oxygen environment** required, **cheap metal sheath material** can be used.
Latest Progress on PIT-IBS wires
Qingjin Xu (IHEP-CAS) and Yanwei Ma (IEE-CAS)

At 30T, 4.2K: $J_c=4\times10^4$ A/cm²

Next target: 10^5 A/cm² at 30 T

Transport property of IBS tape (2018):
Short sample (~4 mm wide, 0.3 mm thick): $I_c \sim 437$ A ($J_c > 1.5\times10^5$ A/cm²) @4.2K, 10T

Now 100 m long 7-filamentary tapes:
$J_c > 3\times10^4$ A/cm² @4.2 K, 10T (3 times larger than the first one)

Showing a good I_c uniformity
Development of Superconducting Magnets for Future Accelerators

- P. Fabbricatore1, E. De Matteis2, S. Farinon1, U. Gambardella3, G. Iannone3, F. Levi1, S. Mariotto2, R. Musenich1, A. Pampaloni1, M. Prioli2, L. Rossi2, M. Sorbi2, M. Statera1, R. U. Valente2 (INFN Genova1, Milano-LASA2 and Napoli-Salerno3)

- **Technical Highlights**
 - **High Field Nb\textsubscript{3}Sn dipoles.** Based on the cos-theta EuroCirCol design for a 16T dipole, in the framework of a CERN-INFN agreement a short model single aperture (Falcon\textunderscore D) is under construction in collaboration with industry.
 - **HTS magnets.** First developments of canted cos-theta magnets are going on.
 - **Pulsed sc magnets.** First design of fast cycled magnets for the accelerator chain of a future Muon Collider
 - All the above developments are considered a first step toward long R&D activities with construction of many models and prototypes.

- **Future plans**
 - Availability to contribute to the extended write-ups.
 - Open to other labs to finding common field of interest for specific developments and/or for sharing and complementing knowledges/expertise
Toward FCC-hh and future colliders: Exploration of high field magnet technology at CEA-Paris Saclay

- Hélène Felice, G. Dilasser, Maria Durante, Philippe Fazilleau, Thibault Lécrevisse, Clément Lorin, P. Manil, F. Nunio, Etienne Rochepault, Françoise Rondeaux, Pierre Védrine

Highlights:

- **Nb$_3$Sn:**
 Demonstrator toward FCC, Multi-scale approach modeling, PhD work on dimensional changes through digital image correlation

- **HTS:**
 Eucard (5.4 T record), Eucard 2 cosθ (assembly stage), Metal-as-insulation double pancakes Nougat (32.5 T), studies of screening currents in REBCO tapes

Next steps:

- **Some key topics identified:** from modeling to fabrication and test
- **Reinforced synergy** btw EU development strategy and International labs is required to achieve accelerator ready high field magnets
- **One tool:** pursuit of topical Workshops such as:
Technical Highlights:

- Alternate design to the conventional cosine theta
- Goal is to develop a field quality design with a lower cost in a large production with improved technical performance
- Design allows a variety of cables, technologies and material

Future Plans:

- Make a case for how this design can help future colliders based on high field dipoles and support R&D programs
- Prepare a write-up and discuss opportunities to collaborate in demonstrating a collider quality high field dipole
Develop high-temperature superconducting REBCO magnet technology for future circular colliders

- **Members from main REBCO magnet programs support the LoI**
 - Bosque (ASC/NHMFL); Ben Yahia, Gupta (BNL); Kashikhin, Lombardo (FNAL); and Gourlay, Wang (LBL)

- **Our message: rapidly develop REBCO magnet technology as a new tool to enable future energy frontier proton and muon colliders**
 - Key advantages of REBCO: enable a dipole field of 20 T and above. Operation over a wide temperature range (2 – 50 K) and capable to tolerate higher heat loads than LTS
 - Significant room for cost reduction; synergy with HTS fusion development
 - Boost the US-Magnet Development Program and allied programs to propel REBCO R&D

- **How can the REBCO R&D better meet/serve future experimental needs?**
 - Provide more input to Snowmass
 - Engage physicists to understand each other and explore ideas/opportunities

8/27/2020

Snowmass AF7-Magnets

REBCO tapes, SuperPower Inc.
CORC® wires, Advanced Conductor Technologies LLC
STAR™ wires, AMPeers LLC
Very high field superconducting magnet technologies based on Bi-2212 for future proton colliders

- E. Barzi (FNAL), E. Bosque (NHMFL), D. Davis (NHMFL), L. Garcia Fajardo (LBNL), Y. Kim (NHMFL), D. Larbalestier (NHMFL), I. Novitski (FNAL), S. Prestemon (LBNL), T. Shen (LBNL), U. Trociewitz, A. Zlobin (FNAL)

- **Opportunities and technical Highlights**: (1) Bi-2212 – the only multifilamentary, twisted, round wire HTS conductor. (2) The conductor technology (wire J_e of 1000 A/mm2 achieved at 4.2 K and 27 T in 2017), experience with prototype coils, and CCT and SMCT magnet design provide an opportunity for adding a very high field, potentially quench training free accelerator dipole magnet technology (>15 T).

- **Need for fabrication and test facility**: RENEGADE (1 m x Ø0.25 m) OPHT furnace (being constructed@NHMFL), hybrid magnet test facility, and high-field, large bore Nb$_3$Sn dipole magnets.

- **Collaboration opportunities**: (1) Rutherford cable engineering and transverse pressure measurement. (2) Conductor development. (3) Hybrid Nb$_3$Sn/HTS magnet design and testing.

- **LOI in preparation**.

- **Open questions**: Are HTS accelerator magnets quench training free? Is the HTS magnet technology scalable?
20 T hybrid magnets

Most effective way to achieve very high collision energies in HEP accelerators: very high field dipole magnets -> 20+ T bore field

Beyond 16 T (limit Nb3Sn) -> HTS superconducting materials, but still significant higher cost than Nb3Sn and Nb-Ti

Economically viable option: “hybrid” magnets

R&D on modelling and with short model fabrication and testing to address different challenges: optimum coil and magnet design for both HTS and LTS, mechanical integration, HTS/LTS ratio, peak stresses, protection with all coils in series, testing, cost, industrialization

Development will pave the way towards very high field magnets for the next generation of particle accelerators
The time is right for BSCCO 30 T solenoids

E. Barzi (FNAL), E. Bosque (NHMFL), D. Davis (NHMFL), Y. Kim, D. Larbalestier (NHMFL), T. Shen (LBNL)

LOI in preparation

• Opportunities and technical Highlights:
 1. Bi-2212 – the only multifilamentary, twisted, round wire HTS conductor, 800-1200 m strand lengths
 2. Wire Ag matrix strengthened up to 160 MPa, composite conductor reinforced above 300 MPa, and magnet level reinforcement above 275 MPa under active development.
 3. Stable, training-free test coil operation with conventional quench management.
 4. Rutherford cable based >30 T solenoids are promising for final muon cooling.

• Facilities:
 1. Renegade over-pressure furnace (1 m x Ø 0.25 m now in construction @NHMFL)
 2. Large bore (>150 mm) 8-14 T LTS solenoid test beds, resistive & hybrid facilities at NHMFL

• Collaborations:
 1. Conductor development.
 2. Development of 25 T commercial user solenoids
 3. Rutherford test solenoids towards 25 T operation
 4. Proposed 28 T insert towards UHF-NMR development.

• Open question: Can we reliably react and reinforce magnets with high current densities under extreme Lorentz stresses?
Integrated Magnet Development for HEP accelerators

- Kathleen Amm, Michael Anerella, Ramesh Gupta, Brett Parker, Piyush Joshi (BNL) Joseph Minervini, John Brisson, (MIT)

- Technical Highlights
 - Specialty magnets –
 - Direct wind (Linear e+e- colliders, electron-ion machines, proton-proton machines, muon colliders)
 - New methods for very high energy colliders
 - HTS
 - Solenoids (30-50T small bore for muon collider cooling, >15T large bore for muon collider 6D cooling, >20T for HEP experiments (e.g. Axion search))
 - VHF Dipoles (20-25 T) - high energy proton-proton, muon colliders (linear luminosity dependence)
 - VHF quadrupoles and multipoles – IR regions for all high energy machines, specialty applications
 - Cross cutting applications with other SC applications – EIC, compact fusion, offshore wind. HEP can leverage efforts and expertise – more bang for the buck

- Future plans – partnerships with sister magnet teams (FNAL, LBNL, BNL, MIT NHMFL) and industry
Shlomo Caspi (LBNL)

SC magnet technology

Nb3Sn magnets, like NbTi magnets, have similar issues that remain unsolved:

- Good progress in SC Nb3Sn magnet technology has reached a point where it is difficult to progress unless new ways are introduce to understand, explain and avoid magnet training – a critical costly problem.
- Ask yourself, in what way the R&D magnet I am building Is going to be different in solving a problem that thousand other magnets were unable to solve. If the answer is pre-stress stop and look for something new.

Future SC magnet technology

- Reduced stress in CCT coils did not solve magnet training but suggested an intrinsic mechanisms within turns to be a more likely source – sintering during reaction, the use of epoxy and mismatch between mechanical properties.
- Reacted Nb3Sn is brittle but like any other brittle material can maintain a certain degree of elasticity (e.g. fiber optics)
- The “Wind-React-Wind” method is a NEW approach for CCT coils:
 - Annealed Nb3Sn (650 C) coils retain their annealed form and maintain a degree of elasticity.
 - Reacted Nb3Sn conductor is sufficiently elastic when it is removed from a reacted CCT mandrel.
 - Placing the removed turns into a similar new unreacted mandrel should be the same.
 - Unreacted mandrel has controlled tolerances and can be made from other materials such as Aluminum.
 - Mandrels should be insulated or coated (e.g. anodizing) voiding the use of cable insulation.
 - Removing impregnation will place liquid Helium within the cable and greatly improve stability.

This new R&D study has a steep learning curve on technology the potential for better understanding foundamental training issues, reduce magnet cost and improve safety.
Reacted Nb3Sn cable in a CCT bronze mandrel

Removed Nb3Sn turns

Flexible Nb3Sn cable removed

Turns replaced into a new anodized (black) Aluminum mandrel
Collider in the Sea: 500 TeV with High Luminosity

• Peter McIntyre, Texas A&M University

• Technical Highlights:
 – Magnet cost/TeV increases steeply with magnetic field.
 – Tunnel cost/TeV increases with size – faults, bad rock.
 – Solution: Choose magnetic field for minimum cost/TeV 3-4 T
 – No tunnel!: 1900 km circular pipeline at 100 m depth, neutral-buoyant
 – C-magnet w/ LN$_2$ side channel for SR: ultimate luminosity

doi:10.1109/TASC.2017.2656157
doi 10.18429/JACoW-NAPAC2016-MOB2CO03

• Working group: Collider-in-the-Sea 500 TeV p-mcintyre@tamu.edu

3.5 T NbTi Cable-in-Conduit
Supercritical He 4-6 K

3.5 T REBCO NI Conformal
NI blocks – LH$_2$ 20-30K

Gulf of Mexico
Additional/Backup Slides
Nb_3Sn magnets
Best-of-breed LTS magnets

2018: FRESCA2
14.6 T at 1.9 K
100 mm bore

2019: MBHB002
11 T at 1.9 K
60 mm bore

2020: eRMC
16.5 T at 1.9 K
No bore

2020: MDPCT1
14.5 T at 1.9 K
60 mm bore
HTS magnets

![Graph showing the development of HTS magnets over time, with various points representing different projects and their fields of operation. The graph includes EuCARD FEATHER.M0-4, EuCARD insert, EuCARD FEATHER.M2-1.2 (40 mm), and BSCCO racetrack LBNL projects.](image)
Best-of-breed HTS magnets

REBCO tapes

5.37 T

4.7 T

4.2 T
Status and Plan of the High Field Magnet R&D for Future Accelerators
Qingjin Xu (IHEP-CAS) and Yanwei Ma (IEE-CAS)

Status of the High Field Dipole Magnet R&D
10.7 T NbTi+Nb₃Sn Common Coil Model Dipole
Status and Plan of the High Field Magnet R&D for Future Accelerators
Qingjin Xu (IHEP-CAS) and Yanwei Ma (IEE-CAS)

Test of the 1st IBS solenoid coil at 24 T and the 1st IBS racetrack coil at 10 T

Very good performance!

Demonstrating that IBS are very promising for high-field magnet applications

Table 2. Specification of single pancake coil

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner diameter</td>
<td>mm</td>
<td>30</td>
</tr>
<tr>
<td>Outer diameter</td>
<td>mm</td>
<td>34.8</td>
</tr>
<tr>
<td>Height</td>
<td>mm</td>
<td>4.62</td>
</tr>
<tr>
<td>Thickness of stainless steel tape</td>
<td>mm</td>
<td>0.1</td>
</tr>
<tr>
<td>Turns</td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td>Total length of IBS wire</td>
<td>mm</td>
<td>450</td>
</tr>
</tbody>
</table>

25T-HM, RT bore Φ38 mm