
Plug-and-play algorithms for data selection à la ptmp

Philip Rodrigues

University of Oxford

August 14, 2020

1



Outline

I Reminder: ptmp data structures
I Reminder: ptmp modules (aka TPAgents)
I Plug-and-play algorithms withTPFilter
I Changes needed for DUNE DAQ

2



A general comment

I ptmp was designed specifically for ProtoDUNE-I, so we wouldn’t plan to just “use ptmp in
DUNE DAQ”. But it’s useful to see the solutions it provides for DUNE DAQ use cases

3



Reminder: ptmp data structures

message TrigPrim {
// The channel of this TP
required uint32 channel = 1;
// Start time, clock ticks
required uint64 tstart = 2;
// The duration of the primitive
// measured in hardware data clock ticks.
optional uint32 tspan = 3;
// The total ADC of the TP
optional uint32 adcsum = 4;
// The peak ADC of the TP above baseline
optional uint32 adcpeak = 5;

}

message TPSet {
// Sequence number
required uint32 count = 1;
// Identify the detector portion that this TPSet derives.
required uint32 detid = 2;
// Wall-clock time TPSet created
required int64 created = 3;
// The smallest tstart of the TPs, ie the tstart
// of the earliest TP, in HW clock ticks
required uint64 tstart = 4;
// The time span of the TPs in the set, measured
// in units of hardware clock "ticks".
optional uint32 tspan = 5;
// The channel providing the lower bound on the set, inclusive.
optional uint32 chanbeg = 6;
// The channel providing the upper bound on the set, inclusive.
optional uint32 chanend = 7;
// sum of ADC of all TPs in the set.
optional uint32 totaladc = 8;
// The TPs
repeated TrigPrim tps = 9;

}

I Only TPSets are sent between modules
I TPSets stand in for trigger candidates and trigger decisions. DUNE DAQ will need separate

classes

4



ptmp module: TPWindow

TPSet 3

TrigPrim [170,175]

TrigPrim [0,5]

TrigPrim [80,90]

TPSet 2

TrigPrim [91,98]

TrigPrim [123,124]

TrigPrim [150,155]

TPSet 1

TrigPrim [15,20]

TrigPrim [101,111]

TrigPrim [73,90]

TPWindow
span=100
offset=0

TPSet 2

TrigPrim [101, 111]

TrigPrim [123, 124]

TrigPrim [150,155]

TPSet 1

TrigPrim [15, 20]

TrigPrim [73, 90]

TrigPrim [91, 98]

TrigPrim [170,175]

[0,100][100,200]

I Repackage TrigPrims into new TPSets with start (data) times in windows starting on a fixed
boundary

I Input hits not required to be sorted by start time. Hits are buffered for a configurable time
before being sent out. Late hits are dropped

I Full details: https://github.com/brettviren/ptmp/blob/master/docs/tpwindow.org

5

https://github.com/brettviren/ptmp/blob/master/docs/tpwindow.org


ptmp module: TPZipper

TPSet 3
[t0, t1]

TPZipper

TPSet 2
[t0, t1]

TPSet 1
[t0, t1]

TPSet 3
[t0, t1]

TPSet 2
[t0, t1]

TPSet 1
[t0, t1]

TPSet 2
[t0, t1]

TPSet 1
[t0, t1]

TPSet 3
[t0, t1]

TPSet 1
[t0, t1]

TPSet 1
[t0, t1]

TPSet 1
[t0, t1]

TPSet 2
[t0, t1]

TPSet 2
[t0, t1]

TPSet 3
[t0, t1]

TPSet 3
[t0, t1]

TPSet 3
[t0, t1]

I Aggregate multiple TPSet message streams, outputting unchanged TPSets in time order with
bounded latency

I TPSets arriving after “their” time has been sent out are considered “tardy” and dropped (eg
green “TPSet 2” in my example above)

6



Putting it together

TPSets of hits from link 1

TPSets of hits from link 2

TPSets of hits from link 3

TPWindow

TPWindow

TPWindow

TPZipper TPFilter candidates downstream

I TPFilter is where the data selection algorithm lives
I With this setup, algorithm is guaranteed to receive TPSets with the same time boundaries1, in

strict time order

1provided you set up the TPWindows the same

7



Implementing algorithms for use inTPFilter

I Create filter function by inheriting from ptmp::filter::engine_t and overriding the function
virtual void operator()(const ptmp::data::TPSet& input_tpset,

std::vector<ptmp::data::TPSet>& output_tpsets)
I TPFilter calls this function for every input TPSet
I If the algorithm wants to send out a trigger candidate/decision, it appends an appropriate

TPSet to output_tpsets
I The choice of algorithm is made at runtime based on a configuration object (ptmp uses JSON

configs). Configuration object also contains settings for the algorithm itself
I TPFilter handles the message sending/receiving

8



Example: simple coincidence engine

I Output a trigger decision if at least nway input links have TPSets in the same time window

void Coincidence_engine::operator()(const ptmp::data::TPSet& in_set,
std::vector<ptmp::data::TPSet>& output_tpsets)

{
++m_n_sets_total;

if(in_set.tstart() > m_last_tstart){
// This is the first item from a new time window
m_last_tstart=in_set.tstart();
m_n_sources=0;

} // end if(new time window)

++m_n_sources;

if(m_n_sources==m_nway){
// Trigger! Create the output TPSet
ptmp::data::TPSet trigger_tpset;
trigger_tpset.set_tstart(in_set.tstart());

// more TPSet setting omitted

output_tpsets.push_back(trigger_tpset);
}

}

Modified from https://github.com/philiprodrigues/ptmp-tcs/blob/master/src/Coincidence_engine.cc

9

https://github.com/philiprodrigues/ptmp-tcs/blob/master/src/Coincidence_engine.cc


Changes needed/possible for DUNE DAQ

I TC and TD objects. Versions of ptmp::filter::engine_t for TP->TC, TC->TD. Say:
virtual void TCEngine::operator()(const TPs& tps_in, std::vector<TC>& tcs_out) = 0;
virtual void TDEngine::operator()(const TCs& tcs_in, std::vector<TD>& tds_out) = 0;

I Pierre is working on this, including interface with appfwk

10



A possible issue

I TPFilter calls algorithm’s operator() once for each TPSet that arrives. ptmp drops empty
TPSets (to reduce traffic from TPs)

I Implies that algorithm code doesn’t know it’s received all the available TPSets for a given time
window until the first TPSet from a later time window

I If the input TPSets are low-rate (more likely for TCs), this could induce a long latency
I Possible responses/solutions:

1. It’s not a problem: the algorithm was given all the available TPSets as soon as they were available. If it
couldn’t decide to trigger with what it had, it wasn’t going to trigger anyway

2. Could instead buffer TPSets in TPFilter and call operator() with a list of all the available TPSets for a
given window

3. Could call operator() with individual TPSets and also have a “current time window done” function to
override

4. Could send empty TPSets. Would need to think about network bandwidth/CPU cost in upstream parts
of system

I Not clear to me what is right

11


