
DAQ Trigger framework
 and appfwk

1

Pierre Lasorak

Pierre Lasorak 18/08/2020

Introduction
• Following discussion in the last DataSelection meeting and Marco’s talk, I implemented simple

trigger algorithms in appfwk

• Some of this is already outdated (discussions on Friday)

• Did the simplest thing I could think of:

• Define trigger “objects”:

• TriggerPrimitive

• TriggerCandidate

• TriggerDecision

• Missing “TriggerCluster” or whatever we decide to call it

• Define algorithms:

• Maker class for each of the object

• Created an interface with appfwk

• Each algorithm is it’s own DAQProcess

• Defined queues etc

2

D
un

eT
rig

ge
rA

lg
s

D
AQ

D
un

eT
rig

ge
rs

Pierre Lasorak 18/08/2020

Trigger Primitive
#pragma once
#include <cstdint>

namespace DuneTriggerAlgs {
 struct TriggerPrimitive {
 int64_t time_start = {0};
 int64_t time_peak = {0};
 int32_t time_over_threshold = {0};
 uint32_t channel = {0};
 uint16_t adc_integral = {0};
 uint16_t adc_peak = {0};
 uint32_t detid = {0};
 uint32_t flag = {0};
 };
}

• Very similar (identical?) to what is in PTMP.

• Hopefully that can accommodate for optical TPs?

3

Pierre Lasorak 18/08/2020

Trigger Candidate
#pragma once
#include <cstdint>

namespace DuneTriggerAlgs {
 struct TriggerCandidate {
 int64_t time_start = {0};
 int64_t time_end = {0};
 int64_t time_peak = {0};
 uint32_t ntps = {0};
 uint32_t channel_start = {0};
 uint32_t channel_end = {0};
 uint32_t channel_peak = {0};
 uint16_t adc_integral = {0};
 uint16_t adc_peak = {0};
 uint32_t detid = {0};
 uint32_t flags = {0};
 };
}

4

Pierre Lasorak 18/08/2020

Trigger Decision
#pragma once
#include <cstdint>

namespace DuneTriggerAlgs {
 struct TriggerDecision {
 int64_t time_start = {0};
 int64_t time_end = {0};
 int64_t time_triggered = {0};
 uint32_t detid = {0};
 uint32_t flag = {0};
 };
}

5

Pierre Lasorak 18/08/2020

Algorithm “Maker”
#pragma once
#include "dune-trigger-algs/TriggerPrimitive.hh"
#include "dune-trigger-algs/TriggerCandidate.hh"
#include <vector>
#include <string>

namespace DuneTriggerAlgs {

 class TriggerCandidateMaker {
 public:
 virtual void operator()(const TriggerPrimitive& input_tp,
 std::vector<TriggerCandidate>& output_tc) = 0;
 virtual void flush(std::vector<TriggerCandidate>&) {};
 };

}

• One for each object (TriggerPrimitiveMaker, TriggerCandidateMaker,
TriggerDecisionMaker)

• operator() pure virtual function → that’s where all the algorithmic part happens

• flush is maybe not needed…

• At the end of the run, maybe somebody is interested in ill-formed clusters which
had to be truncated?

6

Pierre Lasorak 18/08/2020

Appfwk interface
• Where the DAQProcesses are implemented and calling these operator() functions

• Example class:
class DAQTriggerCandidateMaker: public dunedaq::appfwk::DAQModule,
 DuneTriggerAlgs::TriggerCandidateMakerSupernova

• Fills and consumes queues of Trigger objects

• Simplest thing I could think of (most of it is just copy-paste from listrev)

• Obviously, all of this has to run on the same host since there isn’t any message
protocol implemented in the appfwk (or at least I didn’t know about it)

• Holds and parses all the configurations of the algorithms previously defined.

• For example, in case of Supernova trigger decision maker, we might change the
threshold in number of clusters at which the SN trigger is emitted

• Implemented as simple std::atomic<int> in TriggerCandidateMaker, the
DAQProcess is in charge to update it (i.e. reconfiguration can happen without a
“stop and start” sequence)

• Didn’t quite make it happen for this talk

7

Pierre Lasorak 18/08/2020

simplest_trigger.json
{
 "queues": {
 "TPsQueue": {
 "capacity": 1000,
 "kind": "FollyMPMCQueue"
 },
 "TCsQueue": {
 "capacity": 100,
 "kind": "FollyMPMCQueue"
 },
 "TDsQueue": {
 "capacity": 10,
 "kind": "FollyMPMCQueue"
 }
 },

 "modules": {
 "TPsGenerator": {
 "user_module_type": "TriggerPrimitiveRadiological",
 "output": "TPsQueue"
 },
 "TPsGenerator2": {
 "user_module_type": "TriggerPrimitiveSupernova",
 "output": "TPsQueue"
 },
 "TCsGenerator": {
 "user_module_type": "DAQTriggerCandidateMaker",
 "input": "TPsQueue",
 "output": "TCsQueue"
 },
 "TDsGenerator": {
 "user_module_type": "DAQTriggerDecisionMaker",
 "input": "TCsQueue",
 "output": "TDsQueue"
 }
 },

 "commands": {
 "start": ["TDsGenerator", "TCsGenerator", "TPsGenerator", "TPsGenerator2"],
 "stop": ["TPsGenerator", "TPsGenerator2", "TCsGenerator", "TDsGenerator"],
 "configure_threshold": ["TDsGenerator"]
 }
}

8

• Stores everything in MPMCQueues
(probably not the best choice…)

• Generators:

• TCsGenerator consumes TPs

• TDsGenerator consumes TCs

• TPsGenerator should consumes
something representative of the
raw data

• Right now, just generates
random TPs (Argon 39 and
Supernova)

• Of course this is cheating

• Although there are 2 threads
generating TPs, they are nicely
“time ordered”, there are some
assumptions during the
formation of TCs would make it
break if that wasn’t the case

• Would need equivalent of a ptmp’s
“TPwindow” to make it more realistic

Pierre Lasorak 18/08/2020

Running it

9

Legend
Yellow-ish: Ar39 TPs generator
Red: SN TPs generator
Blue: TCs generator
Pink: TDs generator

Pierre Lasorak 18/08/2020

Legend
Yellow-ish: Ar39 TPs generator
Red: SN TPs generator
Blue: TCs generator
Pink: TDs generator

… and a bit further

10

Pierre Lasorak 18/08/2020

Conclusion
• Basic SN triggering scheme implemented in the appfwk

• Quite a bit of bricks are missing to make it usable in the real system, here are the one I can
think of:

• Messaging system in appfwk

• TP window

• This intermediate state between TCs and TDs

• A better idea how to implement TP generator from raw data (no input queue for the TPs in my
example)

• Where to go from here?

• https://github.com/plasorak/DAQDuneTriggers

• https://github.com/plasorak/DuneTriggerAlgs

11

https://github.com/plasorak/DAQDuneTriggers
https://github.com/plasorak/DuneTriggerAlgs
https://github.com/plasorak/DAQDuneTriggers
https://github.com/plasorak/DuneTriggerAlgs

