Coherent Elastic Neutrino-Nucleus Scattering: Theoretical and experimental impact

D. Aristizabal Sierra,^{1,2} C. Augier,³ A.B. Balantekin,⁴ P. S. Barbeau,^{5,6} V. A. Bednyakov,⁷ I. A. Bernardi,⁸ J. Billard,³ C. Bonifazi,⁹ N. S. Bowden,¹⁰ M. Cadeddu,¹¹ D. Chernyak,¹² P. Coloma,¹³ J. Daughhetee,⁸ André de Gouvêa,¹⁴ M. De Jésus,³ M. Demarteau,¹⁵ J. B. Dent,¹⁶ P.B. Denton,¹⁷ K. Ding,¹² V. De Romeri,¹⁸ F. Dordei,¹¹ B. Dutta,¹⁹ Yu. Efremenko,⁸ J. Estrada,²⁰ Y. Farzan,²¹ A. Fava,²⁰ M. Febbraro,¹⁵ G. Fernandez Moroni,²⁰ E. Figueroa-Feliciano,²² J. A. Formaggio,²³ A. Galindo-Uribarri,²⁴ F. Gao,²⁵ E. A. Garcés,²⁶ J. Gascon,³ G. Gerbier,²⁷ J. Gehrlein,¹⁷ G. Giroux,²⁷ C. Giunti,²⁸ M.P. Green,^{29,24,6} W. Haxton,^{30,31} M.R. Heath,²⁴ S. Hedges,^{5,6} M. Hoferichter,³² N. Jachowicz,³³ I. Jovanovic,³⁴ T. Katori,³⁵ I. Katsioulas,³⁶ Amir N. Khan,³⁷ D. Kim,³⁸ H. Kluck,³⁹ T.S. Kosmas,⁴⁰ N.A Kurinsky,²⁰ R.F. Lang,⁴¹ S.Y. Lee,⁴² B.G. Lenardo,⁴³ I. Levine,⁴⁴ Y. F. Li,⁴⁵ J. Liu,¹² L. Li,^{5,6} P.A.N. Machado,²⁰ D.M. Markoff,⁴⁶ J. Mattingly,⁴⁷ B. Mauri,⁴⁸ J. Menéndez,⁴⁹ O. G. Miranda,⁵⁰ D. V. Naumov,⁷ R. Neilson,⁵¹ J. Newby,¹⁵ J.L. Newstead,⁵² K. Ni,⁵³ K. Nikolopoulos,³⁶ C. Nones,⁴⁸ D. Norcini,^{54, 55} K.J. Palladino,⁴ V. Pandey,⁵⁶ D.K. Papoulias,⁴⁰ A. Parada,⁵⁷ J.C. Park,⁵⁸ D.S. Parno,⁵⁹ L. Pattavina,^{60,61} E. Picciau,^{62,63} M.-C. Piro,⁶⁴ J. Qi,⁵³ K. Ramanathan,^{54,55} R. Rapp,⁵⁹ H. Ray,⁵⁶ J. Raybern,⁵ G.C. Rich,⁵⁴ A. Ritz,⁶⁵ D. Rodrigues,⁶⁶ G. Sanchez Garcia,⁵⁰ T. Salagnac,³ D.J. Salvat,⁶⁷ O. Sanders,⁵⁰ J. Schieck,^{39,68} K. Scholberg,⁵ A. Schwenk,⁶⁹ S. Shin,⁴² I.M. Shoemaker,⁷⁰ V. Sibille,²³ N.J.C. Spooner,⁷¹ R. Strauss,⁶¹ L.E. Strigari,³⁸ B.D. Suh,⁶⁷ J. Suhonen,⁷² A.M. Suliga,⁷³ Z. Tabrizi,⁷⁰ V. Takhistov,⁷⁴ R. Tayloe,⁶⁷ M. Toups,²⁰ M. Tórtola,¹⁸ M. Tripathi,⁵⁶ José W. F. Valle,¹⁸ M. Vidal,²⁷ M. Vignati,⁷⁵ M. Vivier,⁴⁸ V. Wagner,⁶¹ J. W. Walker,¹⁶ J. Xu,¹⁰ Y. Y. Zhang,⁴⁵ J. Zettlemoyer,⁶⁷ and I. Savvidis⁷⁶

> Louis E. Strigari Texas A&M University Mitchell Institute for Fundamental Physics and Astronomy

> > NF03 Workshop September 17, 2020

Coherent elastic neutrino-nucleus scattering (CEvNS)

COHERENT detection papers Csl: 1801.05546 Argon: 2003.10630

CEvNS at nuclear reactors

CEvNS at reactors requires low backgrounds, and low threshold detectors

Dutta, Mahapatra, Strigari, Walker, 2015

Searches for new physics with CEvNS

Non-standard/generalized interactions

Scholberg 2005; Barranco 2005; Coloma et al. 2018; Liao & Marfatia 2017; Aristizabal-Sierra et al. 2018

Sterile neutrinos

Anderson et al. 2010; Dutta et al. 2015; Kosmas et al. 2017, Blanco et al. 2019

Nuclear form factors/charge radius

Patton et al. 2013; Cadeddu et al. 2018; Ciuffoli et al. 2018

Magnetic moment

Vogel & Engel 1989

Non-standard neutrino interactions (NSI)

New physics searches facilities by both energy and timing distributions in COHERENT

Dutta, Liao, Sinha, Strigari PRL 2019; Giunti PRD 2020

CEvNS from astrophysical sources

Sun

Neutral current 8B energy spectrum CEvNS + electron scattering evenets (Recent Xenon nT)

Atmosphere

Low energy (< 50 MeV) atmospheric neutrinos Flux uncertainties, dependence on detector location Neutral current interaction; nuclear cross section uncertainties

Supernovae

Neutral current sensitivity to all neutrino flavor components Sensitivity to both Galactic supernova burst (Horiwitz et al. 2003; Lang et al. 2016) and diffuse supernova neutrino background (DSNB)

CEvNS with atmospheric neutrinos

CEvNS community white-paper

Contributions/signatures welcome from all members of community

https://www.overleaf.com/2859619433mgdvwgrxqddt

CEvNS whitepaper

M. Abdullahⁿ, D. Akimov^a, L. Balogh^d, P. S. Barbeau^{q,1}, C. Beaufort^e, I. A. Bernardi^{ap}, A. Bolozdynya^a,
A. Brossard^d, M. Cadeddu^y, P. Coloma^{al}, E.C. Corcoran^f, S. Crawford^d, A. Dastgheibi Fard^e, M. Demarteau^{br},
Y. Deng^g, J. B. Dent^{an}, P. B. Denton^r, K. Dering^d, V. De Romeri^{ar}, F. Dordei^y, D. Dunford^g, B. Duttaⁿ,
E. Figueroa-Feliciano^{ab}, J. A. Formaggio^{bl}, F. Gao^{u,v}, E.A. Garcés^{ay}, J. Gehrlein^r, G. Gerbier^d, I. Giomataris^h,
G. Giroux^d, C. Giunti^x, P. Gorel¹, M.P. Green^{be,bt,bg}, M. Gros^h, O. Guillaudin^e, C. Ha^{bn}, S. Hedges^{q,bg}, S. Hertel^{bm},
E.W. Hoppe^c, N. Jachowicz^{al}, I. Katsioulas^l, F. Kelly^f, D. Kimⁿ, P. Knights^{h,j}, Y.J. Ko^{bo}, T.S. Kosmas^{as}, L. Kwon^f,
R.F. Lang^z, S. Langrockⁱ, P. Lautridou^k, H.S. Lee^{bo}, B.G. Lenardo^{av}, Y. F. Li^{bd}, J. Liu^{ao}, D. Loomba^{bk}, R. Martin^d,
R. D. Martin^d, J.-P. Mols^h, P.A.N. Machado^{bb}, W. Maneschg^{bc}, O. G. Miranda^{ax}, J.-F. Muraz^e, T. Neep^l,
J. L. Newstead^w, K. Ni^{ah}, K. Nikolopoulos^l, D. Norcini^{s,t}, V. Pandey^{al}, P. O'Brien^g, R. Owen^l, D.K. Papoulias^{as},
J. C. Park^{ag}, D. S. Parno^{az}, M.-C. Piro^g, H. Ray^{ba}, G. C. Rich^s, G. Sanchez Garcia^{ax}, O. Sanders^{ax}, D. Santos^e, Y. Sarkis^m, G. Savvidis^d, I. Savvidis^l, K. Scholberg^q, S. Shin^{af}, I.M. Shoemaker^{ad}, D.P. Snowden-Ifft^{bh},
N.J.C. Spooner^{ac}, R. Strauss^{ae}, L. E. Strigariⁿ, J. Suhonen¹, Z. Tabrizi^{bj}, V. Takhistov^{aw}, A. Thompsonⁿ, M. Tórtola^{ar},
M. Tripathi^{al}, J. W. F. Valle^{ar}, M. Vignati^{al}, M. Vivier^{an}, F. Vazquez de Sola Fernandez^d, M. Vidal^d, J. W. Walker^{an},
R. Ward^j, H. T. Wong^b, M. H. Wood^{bi}, M. Zampaolo^e, Y. Y. Zhang^{bd}, J. Zettlemover^{bb}

7.1	Stoppe	ed-pion beams	
	7.1.1	SNS	
	7.1.2	Lujan	
	7.1.3	ESS	
	7.1.4	JSNS	
7.2	Reacto	хх	

7 Experimental efforts

	7.2.1	CONNIE
	7.2.2	CONUS
	7.2.3	MINER
	7.2.4	NEON
	7.2.5	NUCLEUS
	7.2.6	RICOCHET
	7.2.7	RED-100
	7.2.8	NuGen
	7.2.9	TEXONO
	7.2.10	NEW SG
7.3	Dark n	atter & CEvNS detectors
	7.3.1	XENON nT
	7.3.2	LZ
	7.3.3	DARWIN
7.4	SuperN	ova Early Warning System (SNEWS)
7.5	Directi	onal detectors
	7.5.1	CYGNUS
	752	DPICT