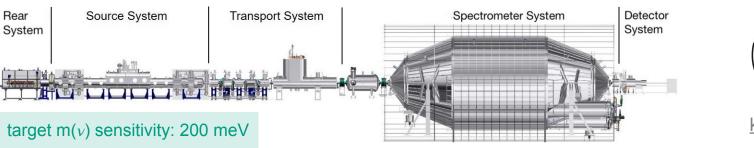


Searches for BSM Physics with the KATRIN Experiment

Snowmass 2021 | NF03 Workshop | September 17, 2020

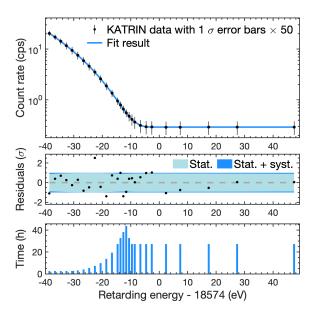
K. Valerius for the KATRIN collaboration

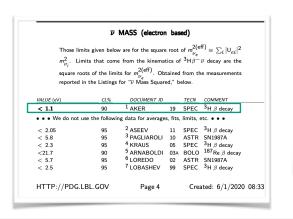


- Active and sterile neutrinos (sub-eV ... eV ... keV scale)
- Right-handed currents and exotic weak interactions
- Cosmic relic neutrinos
- Lorentz invariance violation

KATRIN in a nutshell

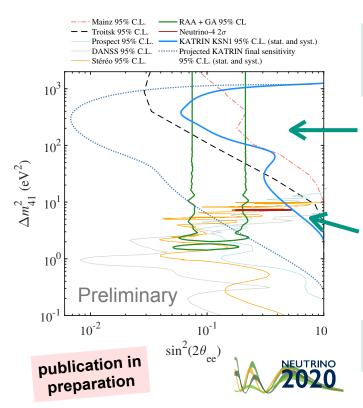
- **Primary science mission:** measurement of effective electron neutrino mass through direct, kinematic method (precision β-decay spectroscopy of molecular tritium)
- **Requirements:** strong tritium source (~10¹¹ β-decays/sec) at high purity & stability, high energy resolution ($\Delta E \sim 1 \text{ eV}$ at $E_0 \sim 18.6 \text{ keV}$), low background rate (~100 mcps or lower)




■ **Deliverable:** precision β-decay spectrum measurement close to endpoint (typically E₀ - 40...100 eV; extendable to ~1600 eV at reduced source strength during commissioning or to full phase space with detector upgrade)

First neutrino-mass result

- Initial neutrino-mass data set (~ 4 weeks at reduced source strength) demonstrates excellent quality of measured spectra and model description
- Improved upper limit: m(v) < 1.1 eV (90% CL) [PRL 123 (2019) 221802]



→ Precision β-decay spectroscopy opens up sensitivity to look for a range of BSM phenomena through distortions of the spectral shape

Search for light sterile neutrinos

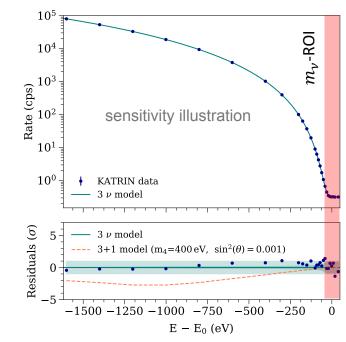
Initial 4-week data set: Demonstrate potential of KATRIN to probe sterile neutrino hypothesis; complementarity with short-baseline oscillation experiments

Region of high Δm^2 :

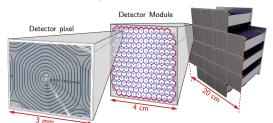
- Improve exclusion with respect to DANSS, PROSPECT, STÉRÉO
- Exclude large Δm² solution preferred by reactor & gallium anomalies

Region of low Δm^2 :

- Improve limits by Mainz and Troitsk
- Neutrino-4 hint region is at the edge of our 95% exclusion


Outlook: Large fraction of reactor/gallium anomalies and Neutrino-4 hint will be probed with full KATRIN data set

Search for more massive sterile neutrinos

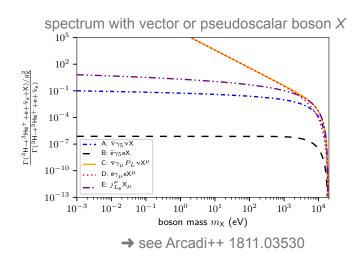


publication in

preparation

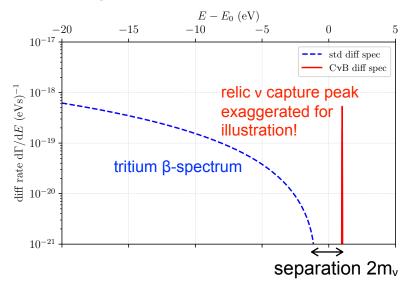
- Proof of principle: Deep scan (1.6 keV) with low-activity commissioning data
- Excellent agreement of model and data
- Sensitivity to $\sin^2\theta = 10^{-3}$ at $m_4 = 0.4$ keV
- Future perspectives: Novel multi-pixel Silicon Drift Detector array (TRISTAN)
 - High-statistics search, coverage of entire spectrum
 - Target sensitivity of $\sin^2 \theta < 10^{-6}$

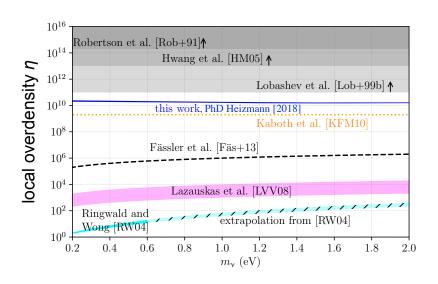
goal: operation in KATRIN by 2025



Exotic weak interactions

What if ...


- ... weak interactions were hiding a left-right symmetric sector?
- ... additional, very light bosons might exist?
- Imprint of right-handed currents in tritium β-spectrum difficult to observe unless E₀ fixed externally
 - → e.g. Severijns++ 2006; Bonn++ 2011
- Picture could change in presence of sterile neutrinos and RH/LH interference
 - → see Barry, Heek & Rodejohann 1404.5955; Ludl & Rodejohann 1603.08690; Steinbrink++ 1703.07667

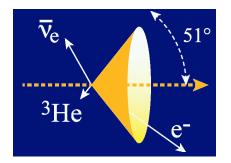


NB: Wider phase-space coverage of the β-spectrum beyond m(v) search window will broaden the reach of BSM physics opportunities \rightarrow extra incentive for detector upgrade

Search for capture of relic neutrinos

Possibility of relic neutrino capture in KATRIN's gaseous T₂ source discussed in several works (e.g., Kaboth *et al.* 2010, Fässler *et al.* 2013, Heizmann 2018)

"Target" mass not likely to support detection, but could constrain local relic overdensities.


Probing Lorentz invariance with KATRIN

"Countershaded" LIV in neutrino sector: Oscillations and direct kinematics can probe complementary quantities (oscillation-free parameters accessible in endpoint experiments)

Standard Model Extension (SME), based on effective field theory + background fields: Anisotropic effects could be observable at KATRIN ("intrinsic direction" via acceptance cone)

Ilustrations by R. Lehnert

Possible impact on tritium β -spectrum:

- Global shift of endpoint E₀
- Sidereal oscillation of E₀: can be looked for in repeated spectrum scans (typ. scan sequence ~2 hrs)
- → See, e.g.: Colladay & Kostelecký 1998; Díaz, Kostelecký & Lehnert 1305.4636

→ Presentation by J. Díaz in this workshop

analysis in progress

Summary

- Direct kinematics of weak decays offer intriguing opportunities for BSM physics searches!
- KATRIN experiment (tritium β-decay):
 - First data release (2019) allowed for new neutrino-mass upper limit and demonstration of potential for sterile neutrino search.
 - Studies of more BSM cases ongoing (e.g. relic neutrinos, right-handed currents & light extra bosons, Lorentz invariance violation).
 - ... further ideas & proposals welcome! :)

■ Data-taking in progress (goal: 1000 measurement days or ~5 calendar years in total), plans for subsequent detector upgrade will further boost BSM search at KATRIN.

References*

- KATRIN collaboration, *Prospects for keV sterile neutrino searches with KATRIN,* LOI submitted to Snowmass 2021 (NF02)
- KATRIN collaboration, Searches for BSM physics with the KATRIN experiment, LOI submitted to Snowmass 2021 (NF03)
- J. A. Formaggio & J. Barrett, *Resolving the reactor neutrino anomaly with the KATRIN neutrino experiment*, Phys. Lett. B 706 (2011) 68
- A. Sejersen Riis & S. Hannestad, Detecting sterile neutrinos with KATRIN like experiments, <u>JCAP 02(2011)011</u>
- A. Esmaili & O. L. G. Peres, *KATRIN* sensitivity to sterile neutrino mass in the shadow of lightest neutrino mass, PRD 85 (2012) 117301
- C. Giunti, Y. F. Li & Y. Y. Zhang, *KATRIN bound on 3+1 active-sterile neutrino mixing and the reactor antineutrino anomaly*, <u>JHEP 05(2020)061</u>
- KATRIN collaboration, Search for eV sterilen neutrinos with KATRIN, in preparation
- J. Stephenson *et al.*, *Tritium beta decay, neutrino mass matrices, and interactions beyond the standard model*, Phys. Rev. D 62 (2000) 093013
- N. Severijns et al., Tests of the standard electroweak model in nuclear beta decay, Rev. Mod. Phys. 78 (2006) 991
- J. Bonn *et al.*, *The KATRIN sensitivity to the neutrino mass and to right-handed currents in beta decay*, <u>Phys. Lett. B 703 (2011) 310</u>

References*

- J. Barry, J. Heeck & W. Rodejohann, Sterile neutrinos and right-handed currents in KATRIN, JHEP 07(2014)081
- P. O. Ludl & W. Rodejohann, Direct neutrino mass experiments and exotic charged current interactions, JHEP 06(2016)040
- N. M. N. Steinbrink *et al.*, Statistical sensitivity on right-handed currents in presence of eV scale sterile neutrinos with KATRIN, JCAP 06(2017)015
- G. Arcadi et al., Tritium beta decay with additional emission of new light bosons, JHEP 01(2019)206
- F. Heizmann, PhD thesis, Karlsruhe Institute of Technology, 2018
- A. Kaboth, J. A. Formaggio & B. Monreal, Sensitivity of neutrino mass experiments to the cosmic neutrino background, PRD 82 (2010) 062001
- A. Fässler, R. Hodak, S. Kovalenko, F. Simkovic, Tritium and rhenium as a probe of cosmic neutrino background,
 J. Phys. G 38 (2011) 075202
- A. Fässler, R. Hodak, S. Kovalenko, F. Simkovic, Search for the Cosmic Neutrino Background with KATRIN, Rom. J. Phys. 58 (2013) 1221, arXiv:1304.5632
- D. Colladay & V. A. Kostelecký, Lorentz-violating extension of the standard model, PRD 58 (1998) 116002
- J. S. Díaz, V. A. Kostelecký & R. Lehnert, Relativity violations and beta decay, PRD 88 (2013) 071902