# MAGE: Probing Antimatter Gravity with Muons



### Daniel M. Kaplan

ILLINOIS INSTITUTE OF TECHNOLOGY



Mu2e-II Snowmass 2021 Workshop 26 Aug. 2020

### Outline

- Motivation: Some history
- Experimental approach
- Required R&D
- Conclusions

## Brief History

Seneral Darticles

- 1928: Dirac postulates antielectrons
- 1932: Anderson discovers positron
- 1955: Chamberlain & Segrè discover antiproton
- I956: M. Goldhaber notes "baryon asymmetry of the universe" (BAU)
  - now generally believed BAU arose through CP violation (discovered 1964)
  - but, pre-1964, more plausible to postulate gravitational repulsion between matter and antimatter – "antigravity"!

## **Brief History**

- Led to Witteborn–Fairbank experiment: measure direction of 'falling' positrons on Faling Electrons and Metallic Electrons," PRIL 19,1049 (1967)
  - preliminary e- test ended inconclusively, e<sup>+</sup> never attempted
- LANL-led team proposed (1986)  $\overline{p}$  gravity experiment at LEAR
  - also inconclusive stray EM forces on charged particles too challenging?
- Moral: need *neutral* antimatter
  - $\overline{H}$  at AD: ALPHA, AEgIS, GBAR
  - Muonium at PSI (FNAL)?

D. M. Kaplan, IIT: Mu2e-II Snowmass Talk

Probing antimatter gravity with muons

8/26/20

F. C. Witteborn & W. M. Fairbank, "Experimental Comparison of the



### Studying Antimatter Gravity C. Amole et al., "Description and

- Experimentally, still unknown if antimatter falls up or down! Or whether  $\overline{g} g = 0$  or  $\varepsilon$ 
  - in principle a simple interferometric measurement with slow antihydrogen beam:

to measure the gravitational mass of antihydrogen," Nature Comm. **4** (2013) 1785:  $-65 < \overline{g}/g < 110$ 

first application of a new technique

T. J. Phillips, "Antimatter gravity studies with interferometry," Hyp. Int. **109** (1997) 357



Probing antimatter gravity with muons

8/26/20

## Studying Antimatter Gravity

- Besides antihydrogen (and maybe positronium), only one other antimatter system conceivably amenable to gravitational measurement:
- Muonium (M or Mu)
  - hydrogenic atom with μ<sup>+</sup> replacing the proton
    - o easy to produce but hard to study!
- Measuring muonium gravity if feasible could be 1<sup>st</sup> (only?) gravitational measurement of a
  - lepton
    2nd-generation particle

### Muonium

- Much is known about muonium...
  - a purely leptonic atom, discovered 1960

V. W. Hughes et al., "Formation of Muonium and Observation of its Larmor Precession," Phys. Rev. Lett. **5**, 63 (1960)

- readily produced when  $\mu^+$  stop in matter
- chemically, almost identical to hydrogen
- atomic spectroscopy well studied
- forms certain compounds (MuCl, NaMu,...)
- "ideal testbed" for QED, search for new forces, precision measurement of muon properties, etc.



## Studying Muonium Gravity

arXiv:physics/0702143v1 [physics.atom-ph]

### Testing Gravity with Muonium

K. Kirch<sup>\*</sup>

Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland (Dated: February 2, 2008)

Recently a new technique for the production of muon  $(\mu^+)$  and muonium  $(\mu^+e^-)$  beams of unprecedented brightness has been proposed. As one consequence and using a highly stable Mach-Zehnder type interferometer, a measurement of the gravitational acceleration  $\bar{g}$  of muonium atoms at the few percent level of precision appears feasible within 100 days of running time. The inertial mass of muonium is dominated by the mass of the positively charged - antimatter - muon. The measurement of  $\bar{g}$  would be the first test of the gravitational interaction of antimatter, of a purely leptonic system, and of particles of the second generation.



## Studying Muonium Gravity

• Adaptation of T. Phillips'  $\overline{H}$  interferometry idea to an antiatom with a 2.2 µs lifetime!



½ gt² = 24 pm Smaller than an atom!

but grows as *t*<sup>2</sup> ⇒ easier problem with *old* muonium

- "Same experiment" as Phillips proposed only harder!
- Is it feasible? How might it be done?

## Studying Muonium Gravity

Part of the challenge: M production method:

- want monoenergetic M for uniform flight time
  - otherwise, interference patterns of different atoms have differing relative phases,
    - so signal could be washed out

(probably not a problem in practice, since interference phase so small...)

want narrow, parallel M beam for good interferometer acceptance

## Monoenergetic Muonium?

- Proposal by D. Taqqu of Paul Scherrer Institute (Switzerland):
  - stop slow (keV) muons in ~ µm thick layer of superfluid He (SFHe)

 $\Rightarrow$  need "muCool"  $\mu^+$  beam upgrade

- chemical potential of M in SFHe will eject M atoms at 6,300 m/s,
   ⊥ to SFHe surface
  - makes  $\approx$  monochromatic, || beam!

### $\Delta E/E \sim 0.1\%$

### • Or (Phillips) ~100 $\mu$ m SFHe layer $\rightarrow$ ~10<sup>2</sup> † inten

D. M. Kaplan, IIT: Mu2e-II Snowmass Talk

Probing antimatter gravity with muons

D. Taqqu, "Ultraslow Muonium for a Muon beam of ultra high quality," Phys. Procedia **17** (2011) 216



11/20

8/26/20

### Experiment Concept

• One can then imagine the following apparatus:



- Well known property of SFHe to coat surface of its container
- So 45° angled section of cryostat serves as reflector to turn vertical M beam emerging from SFHe surface into horizontal

### Experiment Concept

• One can then imagine the following apparatus:



Probing antimatter gravity with muons

### Focusing a Beam of Ultracold Spin-Polarized Hydrogen Atoms with a Helium-Film-Coated Quasiparabolic Mirror

V. G. Luppov

Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120 and Joint Institute for Nuclear Research, Dubna, Russia

W. A. Kaufman, K. M. Hill,\* R. S. Raymond, and A. D. Krisch Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120 (Received 7 January 1993)

We formed the first "atomic-optics" beam of electron-spin-polarized hydrogen atoms using a quasiparabolic polished copper mirror coated with a hydrogen-atom-reflecting film of superfluid <sup>4</sup>He. The mirror was located in the gradient of an 8-T solenoidal magnetic field and mounted on an ultracold cell at 350 mK. After the focusing by the mirror surface, the beam was again focused with a sextupole magnet. The mirror, which was especially designed for operation in the magnetic field gradient of our solenoid, increased the focused beam intensity by a factor of about 7.5.



FIG. 2. Schematic diagram of the stabilization cell and mirror. The Teflon-coated copper nozzle is also shown.

D. M. Kaplan, IIT: Mu2e-II Snowmass Talk

Probing antimatter gravity with muons 8/26/20

13/20

## **Muonium Gravity Experiment**



### Some important questions:

- Can sufficiently precise diffraction gratings be fabricated?
- 2. Can interferometer be aligned to a few pm and adequately stabilized against vibration?
- 3. Can interferometer and detector be operated at cryogenic temperature?
- How determine zero-degree trajectory? 4.
- 5. Does Taqqu's scheme work?

D. M. Kaplan, IIT: Mu2e-II Snowmass Talk

Probing antimatter gravity with muons

8/26/20

14/20

(electrodes

not shown)

### Answering the Questions:

- I. Can sufficiently precise diffraction gratings be fabricated?
  - MAGE collaborator Derrick Mancini (a founder of ANL Center for Nanoscale Materials), thinks so (CNM has sub-nm precision)
     proposal approved at CNM to try it
- 2. Can interferometer be aligned, and stabilized against vibration, to several pm?
  - needs R&D, but LIGO & POEM do much better than we need
  - we are operating a POEM distance gauge (TFG) at IIT



a U-channel machined out of a single-crystal silicon block. Each grating is mounted in a silicon frame connected to an outer frame by flex-hinges; piezo-actuator pair permits small rotations to align the gratings precisely in parallel, as well as scanning of grating 3. Grating frames have mirrors or corner-cube retroflectors at top corners that form part of the laser distance gauges (TFGs) used to measure their position.

D. M. Kaplan, IIT: Mu2e-II Snowmass Talk

Probing antimatter gravity with muons

8/26/20

15/20

Figure 3. Allan deviation indicating TFG incremental-distance precision vs averaging time

### Answering the Questions:

- I. Can sufficiently precise diffraction gratings be fabricated?
  - MAGE collaborator Derrick Mancini (a founder of ANL Center for Nanoscale Materials), thinks so (CNM has sub-nm precision)
     proposal approved at CNM to try it
- 2. Can interferometer be aligned, and stabilized against vibration, to several pm?
  - needs R&D, but LIGO & POEM do much better than we need
  - we are operating a POEM distance gauge (TFG) at IIT
- 3. Can interferometer and detector be operated at cryogenic temperature?
  - needs R&D; at least piezos OK; material properties favorable
- 4. How determine zero-degree trajectory?
  - use cotemporal X-ray beam; invert apparatus
     Incoming
- 5. Does Taqqu's scheme work?
  - needs R&D; we're working on it with PSI & ETHZ

Probing antimatter gravity with muons

Cryos

Thin x-ray

window

x-ray beam

1.4



To do:

0

## Interferometer Alig

- Concept: 2 laser interferometers per
  - using  $\lambda = 1560$  nm, need ~ 3 pm sensitivity  $\Rightarrow ~ 10^{-6} \lambda$ 
    - use PDH locking à la LIGO (resonance, interferometer null, heterodyne detection,...)
      - shot-noise limit (@  $1 \mu W$ ) = 0.04 pm
      - <1 pm demonstrated (averaging over 100 s) "Tracking Frequency</li>
         [D. M. Kaplan et al., "Improved performance of Gauge" (TFG)

[D. M. Kaplan et al., "Improved performance of semiconductor laser tracking frequency gauge," JINST 13 (2018) P03008]

- reduce laser power (~ mW to ~  $\mu$ W)
- demonstrate in miniaturized geometry
- use TFG to show structural stability of muonium interferometer...

[R. Thapa et al., "Subpicometer length measurement using semiconductor laser tracking frequency gauge," Opt. Lett. **36**, 3759 (2011)]





### Additional Considerations

### Optimal muonium pathlength?

- say muonium interferometer baseline doubled: costs  $e^{-2} = 1/7.4$  in event rate, gains x 4 in deflection
  - a net win by 4  $e^{-1} \approx 1.5 \rightarrow \text{Statistically optimal!}$
- OTOH, tripling baseline  $\rightarrow x 1.2$  improvement
  - still better than 1 lifetime, though returns diminishing
  - but 9x bigger signal  $\Rightarrow$  easier calibration, alignment, **& stabilization** Figure 4: Representative MAGE (a) "Thin-film" SFHe beam (b) "Thick-film"
- Need thorough simulation study to identify bractic

Figure 4: Representative MAGE sensitivity estimates vs. grating separation for beam options described in text, with  $0.5 \,\mu$ m-thick gratings of 100 nm pitch, assuming 10% contrast and that the dominant error is statistical; shown is beam time required for  $5\sigma$  determination of the sign of  $\bar{g}$  (i.e.,  $\delta \bar{g}/g = 0.4$ ).<sup>5</sup>



to identify practical optimum, taking all effects into account

D. M. Kaplan, IIT: Mu2e-II Snowmass Talk

Probing antimatter gravity with muons

8/26/20

17/20

### Prospects

- To design the experiment, we need a grant!
  - we're the beneficiaries of the <u>POEM</u> program at Harvard–Smithsonian CfA

including 2 TFGs

 developing MAGE slowly with teams of undergrads (thanks to IIT IPRO program)



- Plausible Fermilab venue would help!
  - and another team working on challenging beam issues

### Latest Papers

Search IOPscience

Atoms 2018, 6(2), 17; doi:10.3390/atoms6020017 (registering DOI)

Open Access Feature Paper Article

Journal of Instrumentation

Journals -

Improved performance of semiconductor laser tracking frequency gauge

Publishing Support

Login -

D.M. Kaplan<sup>a</sup>, T.J. Roberts<sup>a</sup>, J.D. Phillips<sup>a</sup> and R.D. Reasenberg<sup>b</sup> Published 14 March 2018 • © 2018 IOP Publishing Ltd and Sissa Medialab Journal of Instrumentation, Volume 13, March 2018

Books

Article PDF MAGE Collaboration

### Article information

**IOP**science

### Abstract

We describe new results from the semiconductor-laser tracking frequency gauge, an instrument that can perform sub-picometer distance measurements and has applications in gravity research and in space-based astronomical instruments proposed for the study of light from extrasolar planets. Compared with previous results, we have improved incremental distance accuracy by a factor of two, to 0.9 pm in 80 s averaging time, and absolute distance accuracy by a factor of 20, to 0.17  $\mu$ m in 1000 s. After an interruption of operation of a tracking frequency gauge used to control a distance, it is now possible, using a nonresonant measurement interferometer, to restore the distance to picometer accuracy by combining absolute and incremental distance measurements.

RIS

Export citation and abstract BibTeX

### Studying Antimatter Gravity with Muonium

Aldo Antognini <sup>1,2</sup> <sup>⊘</sup>, Daniel M. Kaplan <sup>3,\*</sup> <sup>⊘</sup>, Klaus Kirch <sup>1,2</sup> <sup>⊘</sup>, Andreas Knecht <sup>1</sup> <sup>⊘</sup>, Derrick C. Mancini <sup>3</sup> <sup>⊘</sup>, James D. Phillips <sup>3</sup> <sup>⊘</sup>, Thomas J. Phillips <sup>3</sup> <sup>⊘</sup>, Robert D. Reasenberg <sup>4,5</sup> <sup>⊘</sup> <sup>⊚</sup>, Thomas J. Roberts <sup>3</sup> <sup>⊘</sup> and Anna Soter <sup>1</sup> <sup>⊘</sup> + Jesse Zhang, Jonas Nuber, ETH Zürich

- <sup>1</sup> Paul Scherrer Institute, 5232 Villigen, Switzerland
- <sup>2</sup> ETH Zürich, 8092 Zürich, Switzerland
- <sup>3</sup> Illinois Institute of Technology, Chicago, IL 60616, USA
- <sup>4</sup> Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla, CA 92093, USA
- <sup>5</sup> Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA

Author to whom correspondence should be addressed.

Received: 13 February 2018 / Revised: 23 March 2018 / Accepted: 26 March 2018 / Published: 9 April 2018

(This article belongs to the Special Issue Measuring Gravity in the Lab)

View Full-Text | Download PDF [2742 KB, uploaded 9 April 2018] | Browse Figures

### Abstract

The gravitational acceleration of antimatter,  $\bar{g}$ , has yet to be directly measured; an unexpected outcome of its measurement could change our understanding of gravity, the universe, and the possibility of a fifth force. Three avenues are apparent for such a measurement: antihydrogen, positronium, and muonium, the last requiring a precision atom interferometer and novel muonium beam under development. The interferometer and its few-picometer alignment and calibration systems appear feasible. With 100 nm grating pitch, measurements of  $\bar{g}$  to 10%, 1%, or better can be envisioned. These could constitute the first gravitational measurements of leptonic matter, of 2nd-generation matter, and possibly, of antimatter. View Full-Text

Keywords: gravity; antimatter; muonium; atom interferometer; tracking frequency gauge

### ▼ Figures



### Conclusions

- Antigravity hypothesis might neatly solve several vexing problems in physics and cosmology\*
  - or  $\overline{g} = g \pm \epsilon$ ? clue to a new, QM theory of gravity
- In principle, testable with antihydrogen, positronium, or muonium
  - if possible, all 3 should be measured especially if H
    found anomalous

First measurement of muonium gravity would be a milestone!

• But 1<sup>st</sup> must determine feasibility — in progress!

FNAL venue would help!

D. M. Kaplan, IIT: Mu2e-II Snowmass Talk

Probing antimatter gravity with muons

8/26/20

\*(but no time to explain in detail)

### Final Remarks

 These measurements are a required homework assignment from Mother Nature!

• Whether  $\overline{g} = -g$  or not, if successfully carried out, the results will certainly appear in future textbooks.