Brief Update Theory

Julian Heeck

Mu2e-II Snowmass21 Workshop (iii)

8/26/2020

Theory working group

- Julian Heeck University of Virginia heeck@virginia.edu
- Lorenzo Calibbi Nankai University calibbi@nankai.edu.cn
- Mailing list: mu2eii-theory@fnal.gov

Comments, questions, and members welcome!

Theory challenges and opportunities of Mu2e-II: Letter of Interest for Snowmass 2021

Robert H. Bernstein,¹ Leo Borrel,² Lorenzo Calibbi,³, Andrzej Czarnecki,⁴
Sacha Davidson,⁵ Bertrand Echenard,² Julian Heeck,⁶, David G. Hitlin,² William Marciano,⁷ Sophie C. Middleton,² Vitaly S. Pronskikh,¹ and Robert Szafron⁸
¹Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
²California Institute of Technology, Pasadena, California 91125, USA
³School of Physics, Nankai University, Tianjin 300071, China
⁴Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
⁵LUPM, CNRS, Université Montpellier, Place Eugene Bataillon, F-34095 Montpellier, Cedex 5, France
⁶Department of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA
⁸Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland

- Link to pdf: https://www.dropbox.com/s/kyo3wjlen4vkcf4/LOI_Mu2e_II_theory.pdf
- Please let us know if you want to sign this LOI.
- Plan to submit to RF5: CLFV and TF06: Theory techniques for precision physics.

Goal 1: Stopping target

- Al + heavy = best.
- Al + Ti = good for spin dependence.
 [Davidson, Kuno, Saporta '18]
- Al + Li = good for p vs n. [Davidson, Kuno, Yamanaka '19]
- DOI spectrum and nuclear matrix elements precise enough for all these nuclei?
- Experimental considerations?

Goal 2: $\mu \rightarrow e X$ in Mu2e(-II)

- $\mu \rightarrow e X$ in bound muon produces tail up to $E_{e} \sim 105$ MeV.
- Different tail shape!

 $\mu \rightarrow eX, BR(\mu \rightarrow eX) = 5 \times 10^{-5}, m_X = 0$

[Tormo, Bryman, Czarnecki, Dowling '11]

- Fit background shape to reveal exotic contribution?
- Strong suppression from tail, still competitive?
- Spectral features due to quantum numbers of X? [Uesaka '20]

Mu2e-II 8/26/20

Julian Heeck

Summary

- Encouraging feedback on LOI, international interest!
- Will reach out to potential working group members.
- Established contact with Sensitivity group, main liaison.

Comments welcome!