

MeV Test Area Critical Device Justification

Area Information		
Area/s or Enclosures Protected	MTA Hall and beamline stub (all areas downstream of shield wall)	
Beam Type and Source	H- Beam from Linac; H- or proton beam to experiment	
Beam Energy	400 MeV	
Beam Intensity	2.7e15 ions per hour	

Critical Device 1		
Device Name	E:UHB03	
Device Type	Power supply for 4-magnet dipole string	
Device Location	MTA beamline, upstream of shield wall (linac side)	
Critical Device Controller	L:MUCDC	
CDC Location	Booster West Gallery	
Method of Operation	Contactor Opened	

Critical Device 2		
Device Name	E:UBS01	
Device Type	Beam Stop	
Device Location	MTA beamline, upstream of shield wall (linac side)	
Critical Device Controller	L:MUCDC	
CDC Location	Booster West Gallery	
Method of Operation	Air Solenoid/gravity closed	

Failure Mode Backup

i unure frioue Duchup		
Backup System	RFQ Low Level Disable and Vacuum Gate Valve	
Backup Device Names	RFQ and L:LVV	
Location	RFQ and LEBT	

Failure Analysis		
Is there an unsafe failure mode?	None Identified At This Time	
(If yes please explain)		
Is there a common failure mode	None Identified At This Time	
between Device 1 and 2?		
(If yes, please explain)		
Thomas Kobilarcik, Digitally signed by Thomas Repared Buy, LID: Kobilarco, Kobilarcik, UD: Kobilarco, Data, 8/27/20		
Treparea By: end mana	2020.08.27 16:12:17 -05 00 Date.	
Department: AD External Beamlin	es Department	

Reviewed By: Adam Olso	Digitally signed by Adam Olson Date: 2020.09.02 11:48:20 -05'00'			
Interlock Engineer				
Susan	Digitally signed by Susan McGimpsey			
Reviewed By: McGimpsey	Date: 2020.08.27 20:32:46			
Assigned RSO				

Date: 9/2/20

Date: 8/27/20

Description and Explanation:

The MeV Test Area is a facility, similar to the 120 GeV Fermilab Test Beam Facility operating in the Meson area, providing researches access to 400 MeV protons and H-.

MTA consists of two components, the beam line and the experimental hall. The beamline transports 400 MeV H- from the Linac, through a 12 foot wall, and into an upstream port of the hall. The beamline continues through the porch where the H- is stripped of two electrons and the remaining protons are focused onto the experimental apparatus.

Two critical devices are implemented for MTA operation which insure that beam will not reach the porch or adjoining hall; both of the devices are located on the Linac side of the 12 foot wall.

The first critical device, UHB03, is the power supply energizing four dipole magnets. Each dipole magnet provides 10 degrees of bend, resulting in a total bend angle of 40 degrees. When the power supply is deenergized (that is, the contactor is opened), beam cannot continue beyond the first magnet.

The second device, UBS01, is a pneumatically controlled beam stop. Positive (greater than atmospheric) pressure is required to keep the beam stop out of the beam trajectory; the device is fail-safe. Additionally, the beam stop ranges from 5.75 inches to 6.0 inches in diameter, but is flanged to 3.75" beam pipe; the beam stop completely occludes the aperture of the beam pipe. The beam stop consists of 18 inches of steel followed by eight inches of polyethylene. The steel is adequate to absorb the protons, and the polyethylene is adequate to absorb any resulting neutrons. When the air solenoid is de-energized, pressure is lost and the beam stop falls into the beam trajectory due to gravity.

Additional Work Required and Person(s) Responsible: